
1
while Loop Lesson

CS1313 Spring 2025

20. No Declarations Inside while Loop
21. Compound Statement a.k.a. Block #1
22. Compound Statement a.k.a. Block #2
23. Another while Loop Example #1
24. Another while Loop Example #2
25. Another while Loop Example #3
26. Another while Loop Example #4
27. Another while Loop Example #5
28. Yet Another while Loop Example #1
29. Yet Another while Loop Example #2
30. Yet Another while Loop Example #3
31. Yet Another while Loop Example #4
32. States & Traces #1
33. States & Traces #2
34. States & Traces #3
35. Tracing the Loop #1
36. Tracing the Loop #2
37. Tracing the Loop #3
38. Tracing the Loop #4
39. Tracing the Loop #5

1. while Loop Outline
2. while Loop Example #1
3. while Loop Example #2
4. while Loop Example #3
5. Repetition and Looping
6. while Loop
7. while Loop Behavior
8. while Loop vs. if Block
9. while Loop Flowchart
10. while Loop Example #1
11. while Loop Example #2
12. while Loop Example #3
13. while Loop Example Flowchart
14. Execute Body How Many Times?
15. An Infinite Loop #1
16. An Infinite Loop #2
17. Aside: How to Kill a Program in Unix
18. Kinds of Statements Inside while

Loop
19. Statements Inside while Loop

while Loop Outline

2
while Loop Lesson

CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const float minimum_volume = 0;
 const int program_success_code = 0;
 const int program_failure_code = -1;
 float volume_in_fluid_ounces;

while Loop Example #1

3
while Loop Lesson

CS1313 Spring 2025

printf("What is the volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
 while (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a");
 printf(" negative volume %f!\n",
 volume_in_fluid_ounces);
 printf("So really, what is the");
 printf(" volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
 } /* while (volume_in_fluid_ounces < ...) */
 printf("The volume in fluid ounces is valid.\n");
 return program_success_code;
} /* main */

while Loop Example #2

4
while Loop Lesson

CS1313 Spring 2025

% gcc -o volume_idiot_while volume_idiot_while.c
% volume_idiot_while
What is the volume in fluid ounces?

-5
ERROR: you can't have a negative volume -5.00000!

So really, what is the volume in fluid ounces?

-4
ERROR: you can't have a negative volume -4.00000!

So really, what is the volume in fluid ounces?

0
The volume in fluid ounces is valid.

while Loop Example #3

5
while Loop Lesson

CS1313 Spring 2025

Repetition means performing the same set of statements over and
over.

The most common way to perform repetition is via looping.
A loop is a sequence of statements to be executed, in order,

over and over, as long as some condition continues to be true.

Repetition and Looping

6
while Loop Lesson

CS1313 Spring 2025

C has a loop construct known as a while loop:

 while (condition) {
 statement1;
 statement2;
 ...
 }

The condition of a while loop is
a Boolean expression completely enclosed in parentheses –
just like the condition of an if block.

The sequence of statements between the while statement’s
block open and block close is known as the loop body.

while Loop

7
while Loop Lesson

CS1313 Spring 2025

while (condition) {
 statement1;
 statement2;
 ...
 }
A while loop has to the following behavior:
1. The condition is evaluated, resulting in a value of

either true (1) or false (0).
2. If the condition evaluates to false (0), then

the statements inside the loop body are skipped, and
control is passed to the statement that is
IMMEDIATELY AFTER the while loop’s block close.

3. If the condition evaluates to true (1), then:
a. the statements inside the loop body are executed in order.
b. When the while loop’s block close is encountered,

the program jumps back up to the associated while statement
and starts over with Step 1.

while Loop Behavior

8
while Loop Lesson

CS1313 Spring 2025

A while loop is SIMILAR to an if block, EXCEPT:

1. UNLIKE an if block, the keyword is while.

2. UNLIKE an if block, when a while loop gets to
its block close, it jumps back up to the associated
while statement.

3. UNLIKE an if block,
a while loop has EXACTLY ONE clause,
which is analogous to the if clause.
A while loop CANNOT have anything analogous to
an else if clause nor to an else clause.

while Loop vs. if Block

9
while Loop Lesson

CS1313 Spring 2025

statement_before;
while (condition) {
 statement_inside1;
 statement_inside2;
 ...
}
statement_after;

while Loop Flowchart

10
while Loop Lesson

CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const float minimum_volume = 0;
 const int program_success_code = 0;
 const int program_failure_code = -1;
 float volume_in_fluid_ounces;

while Loop Example #1

11
while Loop Lesson

CS1313 Spring 2025

printf("What is the volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
 while (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a");
 printf(" negative volume!\n");
 printf("So really, what is the ");
 printf(" volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
 } /* while (volume_in_fluid_ounces < ...) */
 printf("The volume in fluid ounces is valid.\n");
 return program_success_code;
} /* main */

while Loop Example #2

12
while Loop Lesson

CS1313 Spring 2025

% gcc -o volume_idiot_while volume_idiot_while.c
% volume_idiot_while
What is the volume in fluid ounces?

-5
ERROR: you can't have a negative volume!

So really, what is the volume in fluid ounces?

-4
ERROR: you can't have a negative volume!

So really, what is the volume in fluid ounces?

0
The volume in fluid ounces is valid.

while Loop Example #3

13
while Loop Lesson

CS1313 Spring 2025

Input volume again.

volume < 0

Input volume.

Prompt for volume.printf("What is the volume in fluid ounces?\n");
scanf("%f", &volume_in_fluid_ounces);
while (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a");
 printf(" negative volume!\n");
 printf("So really, what is the");
 printf(" volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
} /* while (volume_in_fluid_ounces < ...) */
printf("the volume in fluid ounces is valid.\n");

while Loop Example Flowchart

14
while Loop Lesson

CS1313 Spring 2025

while (condition) {
 statement1;
 statement2;
 ...
 }
If the condition evaluates to false (0), then

the loop body won’t be executed at all (that is, zero times).
If the condition evaluates to true (1), then

the loop body might be executed at least one more time.

Execute Body How Many Times?

15
while Loop Lesson

CS1313 Spring 2025

An infinite loop is a loop whose condition NEVER evaluates to false.
#include <stdio.h>

int main ()
{ /* main */
 const int computers_number = 5;
 const int program_success_code = 0;
 int users_number;

 printf("Enter an integer:\n");
 scanf("%d", &users_number);
 printf("I had %d.\n", computers_number);
 while (users_number < computers_number) {
 printf("Your number is less than mine!\n");
 } /* while (users_number < computers_number) */
 return program_success_code;
} /* main */

An Infinite Loop #1

16
while Loop Lesson

CS1313 Spring 2025

% gcc -o infiniteloop infiniteloop.c
% infiniteloop
Enter an integer:
6
I had 5.
% infiniteloop
Enter an integer:
5
I had 5.
% infiniteloop
Enter an integer:
4
I had 5.
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
Your number is less than mine!
...

An Infinite Loop #2

17
while Loop Lesson

CS1313 Spring 2025

CCtrl -

On most Unix systems, including ssh.ou.edu, you can
quit out of a program that is currently executing by typing:

Aside: How to Kill a Program in Unix

18
while Loop Lesson

CS1313 Spring 2025

Between the while statement’s block open and
its associated block close, there can be
any kind of executable statements, and
any number of them.

For example:
 printf statements;
 scanf statements;
 assignment statements;
 if blocks;
 while loops.
There are several other kinds of executable statements that

can occur inside a while loop, some of which
we’ll learn later in the semester.

Kinds of Statements Inside while Loop

19
while Loop Lesson

CS1313 Spring 2025

In the event that the while condition evaluates to true (1),
then the statements inside the while loop body
will be executed one by one,
in the order in which they appear in the while loop.

Statements Inside while Loop

20
while Loop Lesson

CS1313 Spring 2025

Notice that a while loop
SHOULDN’T contain declaration statements,
because the while statement is an executable statement,
and ALL declarations MUST come
before ANY executable statements.

No Declarations Inside while Loop

21
while Loop Lesson

CS1313 Spring 2025

A compound statement is a sequence of statements,
with a well-defined beginning and a well-defined end,
to be executed, in order, under certain circumstances.

A while loop is a compound statement, just like
an if block. We’ll see others later.

Although a while loop is actually a sequence of
statements, we can treat it as a single “super” statement
in some contexts.

Compound statements are also known as blocks.

Compound Statement a.k.a. Block #1

22
while Loop Lesson

CS1313 Spring 2025

In C, a compound statement, also known as a block, is
delimited by curly braces.

That is, a compound statement/block begins with a block open
{

and ends with a block close
}

Compound Statement a.k.a. Block #2

23
while Loop Lesson

CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int false = 0;
 const int true = 1;
 const int minimum_number = 1;
 const int maximum_number = 100;
 const int computers_number = 32;
 const int close_distance = 1;
 const int negative_distance = -1;
 const int no_distance = 0;
 const int program_success_code = 0;
 int users_number, users_distance;
 int users_last_distance = negative_distance;
 char correct_number_hasnt_been_input = true;

Another while Loop Example #1

24
while Loop Lesson

CS1313 Spring 2025

printf("I'm thinking of a number between %d and %d.\n",
 minimum_number, maximum_number);
 while (correct_number_hasnt_been_input) {
 printf("What number am I thinking of?\n");
 scanf("%d", &users_number);
 if ((users_number < minimum_number) ||
 (users_number > maximum_number)) {
 printf("Hey! That's not between %d and %d!\n",
 minimum_number, maximum_number);
 printf("I'll pretend you didn’t say that.\n");
 } /* if ((users_number < minimum_number) || ...) */
 else if (users_number == computers_number) {
 printf("That's amazing!\n");
 correct_number_hasnt_been_input = false;
 } /* if (users_number == computers_number) */

Another while Loop Example #2

25
while Loop Lesson

CS1313 Spring 2025

else {
 users_distance =
 abs(users_number - computers_number);
 if (users_distance == close_distance) {
 printf("You're incredibly hot!\n");
 } /* if (users_distance == close_distance) */
 else if (users_last_distance < no_distance) {
 printf("Not bad for your first try.\n");
 } /* if (users_last_distance < no_distance) */
 else if (users_distance < users_last_distance) {
 printf("You're getting warmer\n");
 } /* if (users_distance < users_last_distance) */
 else if (users_distance > users_last_distance) {
 printf("Ouch! You’re getting colder.\n");
 } /* if (users_distance > users_last_distance) */
 else {
 printf("Uh oh. You made no progress.\n");
 } /* if (users_distance > ...)...else */
 users_last_distance = users_distance;
 } /* if (users_number == computers_number)...else */
 } /* while (correct_number_hasnt_been_input) */
 printf("Good for you!\n");
 return program_success_code;
} /* main */

Another while Loop Example #3

26
while Loop Lesson

CS1313 Spring 2025

% gcc -o warmercolder warmercolder.c
% warmercolder
I'm thinking of a number between 1 and 100.
What number am I thinking of?
0
Hey! That's not between 1 and 100!
I'll pretend you didn’t say that.
What number am I thinking of?
101
Hey! That's not between 1 and 100!
I'll pretend you didn’t say that.
What number am I thinking of?
50
Not bad for your first try.
What number am I thinking of?
40
You're getting warmer
What number am I thinking of?
60
Ouch! You’re getting colder.

Another while Loop Example #4

27
while Loop Lesson

CS1313 Spring 2025

What number am I thinking of?
30
You're getting warmer
What number am I thinking of?
35
Ouch! You're getting colder.
What number am I thinking of?
33
You're incredibly hot!
What number am I thinking of?
31
You're incredibly hot!
What number am I thinking of?
32
That's amazing!
Good for you!

Another while Loop Example #5

28
while Loop Lesson

CS1313 Spring 2025

#include <stdio.h>

#include <stdlib.h>

int main ()

{ /* main */

 const int initial_sum = 0;

 const int increment = 1;

 const int program_success_code = 0;

 const int program_failure_code = -1;

 int initial_value, final_value;

 int count;

 int sum;

Yet Another while Loop Example #1

29
while Loop Lesson

CS1313 Spring 2025

printf("What value would you like to ");
 printf("start counting at?\n");
 scanf("%d", &initial_value);
 printf("What value would you like to ");
 printf("stop counting at,\n");
 printf(" which must be greater than ");
 printf("or equal to %d?\n", initial_value);
 scanf("%d", &final_value);
 if (final_value < initial_value) {
 printf("ERROR: the final value %d is less\n",
 final_value);
 printf(" than the initial value %d.\n",
 initial_value);
 exit(program_failure_code);
 } /* if (final_value < initial_value) */

Yet Another while Loop Example #2

30
while Loop Lesson

CS1313 Spring 2025

sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */
 printf("The sum of the integers from");
 printf(" %d through %d is %d.\n",
 initial_value, final_value, sum);
 return program_success_code;
} /* main */

Yet Another while Loop Example #3

31
while Loop Lesson

CS1313 Spring 2025

% gcc -o whilecount whilecount.c
% whilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
 which must be greater than or equal to 1?
0
ERROR: the final value 0 is less
 than the initial value 1.
% whilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
which must be greater than or equal to 1?
5
The sum of the integers from 1 through 5 is 15.

Yet Another while Loop Example #4

32
while Loop Lesson

CS1313 Spring 2025

The state of a program is the set of values of all of its
variables at a given moment during execution;
that is, it’s a snapshot of the memory that’s being used.

The state also includes information about
where you are in the program when that snapshot is taken.

A trace of a program is a listing of the state of the program
after each statement is executed.

Tracing helps us to examine the behavior of a piece of code,
so it sometimes can be useful in debugging.

States & Traces #1

33
while Loop Lesson

CS1313 Spring 2025

Suppose that, in the previous example program, the user input
1 for initial_value and 5 for final_value.

Let’s examine the program fragment around the loop.
 sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */

States & Traces #2

34
while Loop Lesson

CS1313 Spring 2025

sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */

If we number these statements, we get:

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

States & Traces #3

35
while Loop Lesson

CS1313 Spring 2025

Snapshot of Trace Comments
Itera-
tion #

After
stmt #

Value of
sum

Value of
count

N/A 1 0 garbage Haven’t entered loop yet

N/A 2 0 1 Haven’t entered loop yet
1 3 0 1 Condition evaluates to true (1)

1 4 1 1 new sum = old sum + count = 0 + 1 = 1

1 5 1 2 new count = old count + 1 = 1 + 1 = 2

1 6 1 2 Jump back up to stmt #3 to start iteration #2

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

Tracing the Loop #1

36
while Loop Lesson

CS1313 Spring 2025

Snapshot of Trace Comments
Itera-
tion #

After
stmt #

Value of
sum

Value of
count

2 3 1 2 Condition evaluates to true (1)

2 4 3 2 new sum = old sum + count = 1 + 2 = 3

2 5 3 3 new count = old count + 1 = 2 + 1 = 3

2 6 3 3 Jump back up to stmt #3 to start iteration #3

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

Tracing the Loop #2

37
while Loop Lesson

CS1313 Spring 2025

Snapshot of Trace Comments
Itera-
tion #

After
stmt #

Value of
sum

Value of
count

3 3 3 3 Condition evaluates to true (1)

3 4 6 3 new sum = old sum + count = 3 + 3 = 6

3 5 6 4 new count = old count + 1 = 3 + 1 = 3

3 6 6 4 Jump back up to stmt #3 to start iteration #4

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

Tracing the Loop #3

38
while Loop Lesson

CS1313 Spring 2025

Snapshot of Trace Comments
Itera-
tion #

After
stmt #

Value of
sum

Value of
count

4 3 6 4 Condition evaluates to true (1)

4 4 10 4 new sum = old sum + count = 6 + 4 = 10

4 5 10 5 new count = old count + 1 = 4 + 1 = 5

4 6 10 5 Jump back up to stmt #3 to start iteration #5

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

Tracing the Loop #4

39
while Loop Lesson

CS1313 Spring 2025

Snapshot of Trace Comments
Itera-
tion #

After
stmt #

Value of
sum

Value of
count

5 3 10 5 Condition evaluates to true (1)

5 4 15 5 new sum = old sum + count = 10 + 5 = 15

5 5 15 6 new count = old count + 1 = 5 + 1 = 6

5 6 15 6 Jump back up to stmt #3 to start iteration #6
5 6 15 6 Condition evaluates to false (0), loop exited

1 sum = initial_sum;
2 count = initial_value;
3 while (count <= final_value) {
4 sum = sum + count;
5 count = count + increment;
6 } /* while (count <= final_value) */

Tracing the Loop #5

	while Loop Outline
	while Loop Example #1
	while Loop Example #2
	while Loop Example #3
	Repetition and Looping
	while Loop
	while Loop Behavior
	while Loop vs. if Block
	while Loop Flowchart
	while Loop Example #1
	while Loop Example #2
	while Loop Example #3
	while Loop Example Flowchart
	Execute Body How Many Times?
	An Infinite Loop #1
	An Infinite Loop #2
	Aside: How to Kill a Program in Unix
	Kinds of Statements Inside while Loop
	Statements Inside while Loop
	No Declarations Inside while Loop
	Compound Statement a.k.a. Block #1
	Compound Statement a.k.a. Block #2
	Another while Loop Example #1
	Another while Loop Example #2
	Another while Loop Example #3
	Another while Loop Example #4
	Another while Loop Example #5
	Yet Another while Loop Example #1
	Yet Another while Loop Example #2
	Yet Another while Loop Example #3
	Yet Another while Loop Example #4
	States & Traces #1
	States & Traces #2
	States & Traces #3
	Tracing the Loop #1
	Tracing the Loop #2
	Tracing the Loop #3
	Tracing the Loop #4
	Tracing the Loop #5

