
1
Variables Lesson
CS1313 Spring 2025

16. Setting the Value of a Variable
17. Variable Assignment
18. Variable Assignment Example
19. Variable Assignment Example Program #1
20. Variable Assignment Example Program #2
21. The Same Source Code without Comments
22. Assignment is an Action, NOT an Equation #1
23. Assignment is an Action, NOT an Equation #2
24. Assignment is an Action, NOT an Equation #3
25. Changing a Variable’s Contents
26. Changing a Variable’s Contents: Example #1
27. Changing a Variable’s Contents: Example #2
28. The Same Source Code without Comments
29. Setting the Value of a Variable
30. Variable Initialization
31. Variable Initialization Example #1
32. Variable Initialization Example #2
33. Initialize, Then Assign
34. The Same Source Code without Comments
35. C Variable Names
36. Favorite Professor Rule for Variable Names

1. Variables Lesson Outline
2. Data Types
3. What is a Variable?
4. What is a Variable? (With Examples)
5. What Does a Variable Have?
6. Who Chooses Each Variable

Property?
7. The Value of a Variable Can Vary
8. Jargon: Compile Time and Runtime
9. Variable Declaration: Name & Data

Type
10. Variable Declaration: Address
11. Variable Declaration: Initial Value #1
12. Variable Declaration: Initial Value #2
13. Variable Declaration: Initial Value #3
14. Variable Garbage Value Exercise
15. Declaration Section & Execution

Section

Variables Lesson Outline

2
Variables Lesson
CS1313 Spring 2025

A data type is (surprise!) a type of data:
 Numeric

 int: integer
 float: floating point (also known as real)

 Non-numeric
 char: character

Note that this list of data types ISN’T exhaustive –
there are many more data types (and you can define your own).

#include <stdio.h>
int main ()
{ /* main */
 float standard_deviation, relative_humidity;
 int count, number_of_silly_people;
 char middle_initial, hometown[30];
} /* main */

Data Types

3
Variables Lesson
CS1313 Spring 2025

A variable is an association among:
 a name,
 an address,

and
 a data type.

What is a Variable?

4
Variables Lesson
CS1313 Spring 2025

A variable is an association among:
 a name (for example, number_of_students),
 an address (that is, a location in memory, such as 123456),

and
 a data type (for example, int, float, char).

What is a Variable? (With Examples)

5
Variables Lesson
CS1313 Spring 2025

Every variable has:
 a name (for example, number_of_students),
 an address (that is, a location in memory, such as 123456),
 a data type (for example, int, float, char),

 AND

 a value, also known as the contents of the variable –
specifically, the value is the contents of (what’s inside)
the variable’s memory location.
(The value might be undefined, also known as garbage –
more on this point soon.)

What Does a Variable Have?

6
Variables Lesson
CS1313 Spring 2025

Every variable has:
 a name (for example, number_of_students),

chosen by the programmer;
 an address (that is, a location in memory, such as 123456),

chosen by the compiler;
 a data type (for example, int, float, char),

chosen by the programmer;
 a value, sometimes chosen by the programmer, and

sometimes determined while the program is running
(at runtime), for example based on one or more inputs.
(The value might be undefined, also known as garbage.)

Who Chooses Each Variable Property?

7
Variables Lesson
CS1313 Spring 2025

The value of a variable can vary; that is,
it can be changed at runtime.

We’ll see how in a moment.

The Value of a Variable Can Vary

8
Variables Lesson
CS1313 Spring 2025

 Events that occur while a program is being compiled
are said to happen at compile time.

 Events that occur while a program is running
are said to happen at runtime.

For example:
 the address of a variable is chosen at compile time;
 the value of a variable typically is determined at runtime.

Jargon: Compile Time and Runtime

9
Variables Lesson
CS1313 Spring 2025

int x;
Remember: A program is a description of (1) a collection of data

and (2) a sequence of actions on that data.
Before a program can use a variable, the program has to know

(a) that the variable exists , (b) what the variable’s name is, and
(c) what type of data the variable can have.

A declaration is a statement that tells the compiler all of these
things: the variable exists, its name, and its data type.

For example, the declaration statement above tells the compiler to
 choose a location in memory for a variable,
 name that variable x,
and
 think of that variable as an int .
Note that the declaration above doesn’t specify a value for x.

Variable Declaration: Name & Data Type

10
Variables Lesson
CS1313 Spring 2025

int x;

The compiler might decide that x will live at, say,
address 3980 or address 98234092 or address 56436.

We don’t know, and don’t care, what address x lives at,
because the compiler will keep track of that for us.

It’s enough to know that x has an address and that
the address of x will stay the same throughout
a given run of the program.

Variable Declaration: Address

11
Variables Lesson
CS1313 Spring 2025

When x is first declared, we don’t know what its value is,
because we haven’t put anything into its memory location yet,
so we say that its value is undefined, or, informally, garbage.

We’ll see in a moment how to put values into our variables.

????????x: (address 56436)
int x;

Variable Declaration: Initial Value #1

12
Variables Lesson
CS1313 Spring 2025

When x is first declared, we don’t know what its value is,
because we haven’t put anything into its memory location yet,
so we say that its value is undefined, or, informally, garbage.

Note: Some compilers for some languages automatically initialize
newly declared variables to default values (for example,
all integers might get initialized to zero), but
not every compiler does automatic initialization.

You should NEVER NEVER NEVER assume that
the compiler will initialize your variables for you.

You should ALWAYS ALWAYS ALWAYS
explicitly give values to your variables
in the body of the program, as needed.

Variable Declaration: Initial Value #2

13
Variables Lesson
CS1313 Spring 2025

6262

(1)

5
5

(2) (3)

You can think of a variable’s memory location as
a box that always contains
EXACTLY ONE THING AT A TIME.

So, if you haven’t put anything into the box yet, then
the contents of that box is whatever was left in it
when the previous user finished with it.

You don’t know what that value meant, so to you it’s garbage.
When you put your value into that box, the new value overwrites

(or clobbers, meaning replaces) what was previously there.

Variable Declaration: Initial Value #3

14
Variables Lesson

CS1313 Spring 2025

 Think of an integer between 0 and 100 that is meaningful to you
(for example, how many siblings you have, or your dog’s age,
or whatever).

 Take out a blank sheet of notebook paper
(or share from a neighbor).

 Cut that sheet of paper in half, and then cut it in half again.
(You can share the leftover quarter sheets with your neighbors.)

 On your quarter sheet of paper, write the integer you thought of.
 Fold your quarter sheet in half, and then fold it in half again.
 When everyone is ready, hand your foler quarter sheet to

the person sitting to your left, but don’t say anything.
 Let’s see what happens!

Variable Garbage Value Exercise

15
Variables Lesson
CS1313 Spring 2025

Body

Declaration Section

The declaration section of a program is the section of the program
that contains all of the program’s declarations.

The declaration section is always
at the beginning of the program,
just after the block open that follows the main function header:

#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */

The execution section, also known as the body,
comes after the declaration section.

Declaration Section & Execution Section

16
Variables Lesson
CS1313 Spring 2025

There are three ways to set the value of a variable:
 assignment;
 initialization;
 input.

Setting the Value of a Variable

17
Variables Lesson
CS1313 Spring 2025

5

(2)

5

(1)

Garbage

5x: (address 56436)

An assignment statement sets the contents of a specific variable
to a specific value:

x = 5;

This statement tells the compiler to put the integer value 5 into
the memory location named x, like so:

We say “x is assigned five” or “x gets five.”

Variable Assignment

18
Variables Lesson
CS1313 Spring 2025

x = 5; /* We say "x gets 5" or "x is assigned 5." */

x = 12; /* We say "x gets 12" or "x is assigned 12." */

After then executing the assignment statement x = 12; (pronounced “x gets 12” or “x is assigned 12”), x has the
value 12.

After executing the assignment statement x = 5; (pronounced “x gets 5” or “x is assigned 5”), x has the vaule 5.

After x is declared, x has an undefined (garbage) value.

12x: (address 56436)
x = 12;

5x: (address 56436)
x = 5;

????????x: (address 56436)
int x;

Variable Assignment Example

19
Variables Lesson
CS1313 Spring 2025

% cat assign.c
/*

 *** Program: assign ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012Fridays 1:00pm ***
 *** Description: Declares, assigns and ***
 *** outputs a variable. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*
 *
 **
 * Declaration section *
 **
 *

 * Local variables *

 *
 * height_in_cm: my height in cm
 */
 int height_in_cm;

Variable Assignment Example Program #1

20
Variables Lesson
CS1313 Spring 2025

/*

 * Execution section *

 * Assign the integer value 160 to height_in_cm.
 */
 height_in_cm = 160;
 /*
 * Print height_in_cm to standard output.
 */
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o assign assign.c
% assign
My height is 160 cm.

Variable Assignment Example Program #2

21
Variables Lesson
CS1313 Spring 2025

% cat assign.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o assign assign.c
% assign
My height is 160 cm.

The Same Source Code without Comments

22
Variables Lesson
CS1313 Spring 2025

An assignment is an ACTION, NOT an equation.

height_in_cm = 160;

An assignment statement means:

“Take the value on the right hand side of the single equals sign,
and put it into
the variable on the left hand side of the single equals sign.”

height_in_cm = 160;

(The phrase “single equals sign” will make sense in a few weeks,
when we start to talk about Boolean expressions.
For now, ACCEPT IT ON FAITH.)

Assignment is an Action, NOT an Equation #1

23
Variables Lesson
CS1313 Spring 2025

An assignment is an ACTION, NOT an equation.

#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */

The assignment statement
 height_in_cm = 160;
means “put the int value 160 into the memory location of

the int variable named height_in_cm.”
OR, “height_in_cm gets 160.”

Assignment is an Action, NOT an Equation #2

24
Variables Lesson
CS1313 Spring 2025

ERROR!

An assignment is an ACTION, NOT an equation –
it means “do this,” NOT “this is the case.”

The variable whose value is being set by the assignment
MUST appear on the left side of the equals sign.

% cat not_an_equation.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 160 = height_in_cm;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o not_an_equation not_an_equation.c
not_an_equation.c: In function ‘main’:
not_an_equation.c:7: error: invalid lvalue in assignment

Assignment is an Action, NOT an Equation #3

25
Variables Lesson
CS1313 Spring 2025

One way to change the value – the contents – of a variable
is with another assignment statement.

Changing a Variable’s Contents

26
Variables Lesson
CS1313 Spring 2025

% cat change.c
/*

 *** Program: change ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012Fridays 1:00pm ***
 *** Description: Declares, assigns, changes ***
 *** and outputs a variable. ***

 */
#include <stdio.h>
int main ()
{ /* main */
 /*
 **
 * Declaration section *
 **
 *

 * Local variables *

 *
 * height_in_cm: my height in cm
 */
 int height_in_cm;

Changing a Variable’s Contents: Example #1

27
Variables Lesson
CS1313 Spring 2025

/*

 * Execution section *

 * Assign the integer value 160 to height_in_cm.
 */
 height_in_cm = 160;
 /*
 * Print height_in_cm to standard output.
 */
 printf("My height is %d cm.\n", height_in_cm);
 /*
 * Assign the integer value 200 to height_in_cm.
 */
 height_in_cm = 200;
 /*
 * Print height_in_cm to standard output.
 */
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o change change.c
% change
My height is 160 cm.
My height is 200 cm.

Changing a Variable’s Contents: Example #2

28
Variables Lesson
CS1313 Spring 2025

% cat change.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n", height_in_cm);
 height_in_cm = 200;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o change change.c
% change
My height is 160 cm.
My height is 200 cm.

Recall that a program is a collection of data and
a SEQUENCE of actions.

The Same Source Code without Comments

29
Variables Lesson
CS1313 Spring 2025

There are three ways to set the value of a variable:
 assignment;
 initialization;
 input.

Setting the Value of a Variable

30
Variables Lesson
CS1313 Spring 2025

To initialize a variable means
to declare it and assign it a value in the same statement:

 int x = 5;

This statement is EXACTLY THE SAME as
declaring x in the declaration section, and then
IMMEDIATELY assigning it 5 at the beginning of
the execution section.

For example:
 int x;

 x = 5;

means EXACTLY THE SAME as:
 int x = 5;

Variable Initialization

31
Variables Lesson
CS1313 Spring 2025

% cat initialize.c
/*

 *** Program: initialize ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012Fridays 1:00pm ***
 *** Description: Declares/initializes and ***
 *** outputs a variable. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*
 **
 * Declaration section *
 **
 *

 * Local variables *

 *
 * height_in_cm: my height in cm
 */
 int height_in_cm = 160;

Variable Initialization Example #1

32
Variables Lesson
CS1313 Spring 2025

/*
 **
 * Execution section *
 **
 *
 * Print height_in_cm to standard output.
 */
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o initialize initialize.c
% initialize
My height is 160 cm.

Variable Initialization Example #2

33
Variables Lesson
CS1313 Spring 2025

% cat initialize.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm = 160;

 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o initialize initialize.c
% initialize
My height is 160 cm.

The Same Source Code without Comments

34
Variables Lesson
CS1313 Spring 2025

You can initialize a variable in the declaration section, and then
change its value in the execution section (body)
via an assignment statement.

% cat initialize_assign.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm = 160;

 printf("My height is %d cm.\n", height_in_cm);
 height_in_cm = 200;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o initialize_assign initialize_assign.c
% initialize_assign
My height is 160 cm.
My height is 200 cm.

Initialize, Then Assign

35
Variables Lesson
CS1313 Spring 2025

C identifiers (including variable names) have
the following properties:

 Constructed using only these characters:
 Letters (case sensitive: it matters whether it’s upper case or

lower case)
 a b c d e f g h i j k l m
 n o p q r s t u v w x y z
 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z

 Digits
 0 1 2 3 4 5 6 7 8 9

 Underscore (NOTE: NOT hyphen)
 _
 The first character MUST be a letter or an underscore:
 a123_456 is good, and so is _a123456,

but not 1a23_456

C Variable Names

A variable name should be so obvious that your favorite professor
in your major, even if they know nothing about programming,
could immediately tell what that variable name means.

36
Variables Lesson
CS1313 Spring 2025

Favorite Professor Rule for Variable Names

https://images.techhive.com/images/idge/imported/article/itw/2013/10/
23/programmers_hardest_tasks-600x700-100521914-orig.jpg

https://images.techhive.com/images/idge/imported/article/itw/2013/10/23/programmers_hardest_tasks-600x700-100521914-orig.jpg
https://images.techhive.com/images/idge/imported/article/itw/2013/10/23/programmers_hardest_tasks-600x700-100521914-orig.jpg

	Variables Lesson Outline
	Data Types
	What is a Variable?
	What is a Variable? (With Examples)
	What Does a Variable Have?
	Who Chooses Each Variable Property?
	The Value of a Variable Can Vary
	Jargon: Compile Time and Runtime
	Variable Declaration: Name & Data Type
	Variable Declaration: Address
	Variable Declaration: Initial Value #1
	Variable Declaration: Initial Value #2
	Variable Declaration: Initial Value #3
	Variable Garbage Value Exercise
	Declaration Section & Execution Section
	Setting the Value of a Variable
	Variable Assignment
	Variable Assignment Example
	Variable Assignment Example Program #1
	Variable Assignment Example Program #2
	The Same Source Code without Comments
	Assignment is an Action, NOT an Equation #1
	Assignment is an Action, NOT an Equation #2
	Assignment is an Action, NOT an Equation #3
	Changing a Variable’s Contents
	Changing a Variable’s Contents: Example #1
	Changing a Variable’s Contents: Example #2
	The Same Source Code without Comments
	Setting the Value of a Variable
	Variable Initialization
	Variable Initialization Example #1
	Variable Initialization Example #2
	The Same Source Code without Comments
	Initialize, Then Assign
	C Variable Names
	Favorite Professor Rule for Variable Names

