
1User Defined Functions Lesson 2
CS1313 Spring 2025

15. Side Effects #1
16. Side Effects #2
17. Side Effects Example #1
18. Side Effects Example #2
19. Side Effects Example #3
20. Side Effects Example #4
21. A Function That Doesn’t Return a Value #1
22. A Function That Doesn’t Return a Value #2
23. void Functions #1
24. void Functions #2
25. void Function Call Example #1
26. void Function Call Example #2
27. void Function Call Example #3
28. void Function Call Example #4
29. Why Do We Like Code Reuse?
30. Why Do We Like User-Defined Functions?

1. User Defined Functions 2 Outline
2. Argument Order When Passing Arrays #1
3. Argument Order When Passing Arrays #2
4. Code Reuse Is GOOD GOOD GOOD #1
5. Code Reuse Is GOOD GOOD GOOD #2
6. Actual vs. Formal Arguments #1
7. Actual vs. Formal Arguments #2
8. Argument Order
9. Argument Order in Function: Arbitrary #1
10. Argument Order in Function: Arbitrary #2
11. Actual EXACTLY MATCH Formal #1
12. Actual EXACTLY MATCH Formal #2
13. Argument Order Convention #1
14. Argument Order Convention #2

User Defined Functions 2 Outline

2User Defined Functions Lesson 2
CS1313 Spring 2025

float arithmetic_mean (float* array, int number_of_elements)

When we pass an array to a function as an argument,
we also need to pass its length, because the length of
the array (for example, in the main function),
whether statically declared at compile time or
dynamically allocated at runtime, is not automatically known
by the function.

When passing an array as a function argument –
and therefore passing the length of the array as well –
it doesn’t matter what order the formal arguments appear in
the function’s formal argument list, as long as
they match the actual argument list.

Argument Order When Passing Arrays #1

3User Defined Functions Lesson 2
CS1313 Spring 2025

float arithmetic_mean (float* array, int number_of_elements)

When passing an array as a function argument –
and therefore passing the length of the array as well –
it doesn’t matter what order the formal arguments appear in
the function’s formal argument list.

HOWEVER, it matters very much that the order of
the formal arguments in the function’s formal argument list
EXACTLY MATCH the order of
the actual arguments in the function call.

IMPORTANT NOTE:
 The length argument MUST be an int.

Argument Order When Passing Arrays #2

4User Defined Functions Lesson 2
CS1313 Spring 2025

We like to make our programming experiences reasonably
efficient.

Often, we find ourselves doing a particular task the same way
in many different contexts.

It doesn’t make sense, from a software development point of
view, to have to type in the same piece of source code
over and over and over.

So, in solving a new problem – that is, in writing
a new program – we want to be able to reuse
as much existing source code as we possibly can.

Not surprisingly, this is called code reuse.

Code Reuse Is GOOD GOOD GOOD #1

5User Defined Functions Lesson 2
CS1313 Spring 2025

Code reuse is GOOD GOOD GOOD.
It makes us happy as programmers, because:
1. We can get to the solution of a new problem much more

quickly.
2. We can thoroughly test and debug a piece of source code

that does a common, well-defined task, and then be confident
that it will work well in a new context.

Code Reuse Is GOOD GOOD GOOD #2

6User Defined Functions Lesson 2
CS1313 Spring 2025

In our cube root examples, we’ve seen function calls
that look like this:

cube_root_value1 = cube_root(input_value1);
We say that:
 this assignment statement
 calls the user-defined function cube_root
 using as its actual argument the variable input_value1
 which corresponds to the function definition’s formal

argument base
 and returns the cube root of
 the value stored in the variable input_value1
 into the variable named cube_root_value1.

Actual vs. Formal Arguments #1

7User Defined Functions Lesson 2
CS1313 Spring 2025

The actual argument is the argument that appears in
the call to the function (for example, in the main function).

The formal argument is the argument that appears in
the definition of the function.

Not surprisingly, the mathematical case is the same.
In a mathematical function definition like

f(x) = x + 1
if we want the value of

f(1)
then x is the formal argument of the function f, and

1 is the actual argument.

Actual vs. Formal Arguments #2

8User Defined Functions Lesson 2
CS1313 Spring 2025

Suppose that a function has multiple arguments.
Does their order matter?

No, yes and yes.
No, in the sense that the order of arguments

in the function definition is arbitrary.
Yes, in the sense that the order of the formal arguments

in the function definition must EXACTLY MATCH
the order of the actual arguments in the function call.

Yes, in the sense that it’s a good idea to set a convention for
how you’re going to order your arguments,
and then to stick to that convention.

Argument Order

9User Defined Functions Lesson 2
CS1313 Spring 2025

float arithmetic_mean (float* array, int number_of_elements)
{ /* arithmetic_mean */
 const float initial_sum = 0.0;
 const int minimum_number_of_elements = 1;
 const int first_element = 0;
 const int program_failure_code = -1;
 float sum, arithmetic_mean_value;
 int element;
 if (number_of_elements < minimum_number_of_elements) {
 printf("ERROR: can't have an array of length %d:\n",
 number_of_elements);
 printf(" it must have at least %d element.\n",
 minimum_number_of_elements);
 exit(program_failure_code);
 } /* if (number_of_elements < ...) */
 if (array == (float*)NULL) {
 printf("ERROR: can't calculate the arithmetic mean of ");
 printf("a nonexistent array.\n");
 exit(program_failure_code);
 } /* if (array == (float*)NULL) */
 sum = initial_sum;
 for (element = first_element;
 element < number_of_elements; element++) {
 sum += array[element];
 } /* for element */
 arithmetic_mean_value = sum / number_of_elements;
 return arithmetic_mean_value;
} /* arithmetic_mean */

Argument Order in Function: Arbitrary #1

10User Defined Functions Lesson 2
CS1313 Spring 2025

float arithmetic_mean (int number_of_elements, float* array)
{ /* arithmetic_mean */
 const float initial_sum = 0.0;
 const int minimum_number_of_elements = 1;
 const int first_element = 0;
 const int program_failure_code = -1;
 float sum, arithmetic_mean_value;
 int element;
 if (number_of_elements < minimum_number_of_elements) {
 printf("ERROR: can't have an array of length %d:\n",
 number_of_elements);
 printf(" it must have at least %d element.\n",
 minimum_number_of_elements);
 exit(program_failure_code);
 } /* if (number_of_elements < ...) */
 if (array == (float*)NULL) {
 printf("ERROR: can't calculate the arithmetic mean of ");
 printf("a nonexistent array.\n");
 exit(program_failure_code);
 } /* if (array == (float*)NULL) */
 sum = initial_sum;
 for (element = first_element;
 element < number_of_elements; element++) {
 sum += array[element];
 } /* for element */
 arithmetic_mean_value = sum / number_of_elements;
 return arithmetic_mean_value;
} /* arithmetic_mean */

Argument Order in Function: Arbitrary #2

11User Defined Functions Lesson 2
CS1313 Spring 2025

#include <stdio.h>
...
int main ()
{ /* main */
 ...
 list1_arithmetic_mean =
 arithmetic_mean(list1_input_value, number_of_elements);
 ...
} /* main */

float arithmetic_mean (float* array, int number_of_elements)
{ /* arithmetic_mean */
 ...
} /* arithmetic_mean */

Actual EXACTLY MATCH Formal #1

12User Defined Functions Lesson 2
CS1313 Spring 2025

#include <stdio.h>
...
int main ()
{ /* main */
 ...
 list1_arithmetic_mean =
 arithmetic_mean(number_of_elements, list1_input_value);
 ...
} /* main */

float arithmetic_mean (int number_of_elements, float* array)
{ /* arithmetic_mean */
 ...
} /* arithmetic_mean */

Actual EXACTLY MATCH Formal #2

13User Defined Functions Lesson 2
CS1313 Spring 2025

In general, it’s good practice to pick a convention for
how you will order your argument lists, and
to stick with that convention.

The reason for this is that, as you develop your program,
you’ll jump around a lot from place to place in the program,
and you’ll forget what you did in the other parts of the
program.

Pick a convention for argument order, and stick to it.

Argument Order Convention #1

14User Defined Functions Lesson 2
CS1313 Spring 2025

Here’s an example argument order convention:
1. all arrays in alphabetical order, and then
2. all lengths of arrays in the same order as those arrays,

and then
3. all non-length scalars, in alphabetical order.
Given this convention:
 when you define a new function,

you know what order to use in the function definition;
 when you call a function that you’ve defined,

you know what order to use in the function call.

Argument Order Convention #2

15User Defined Functions Lesson 2
CS1313 Spring 2025

A side effect of a function is something that the function does
other than calculate and return its return value, and that
affects something other than the values of local variables.

Side Effects #1

16User Defined Functions Lesson 2
CS1313 Spring 2025

int input_number_of_elements ()
{ /* input_number_of_elements */
 const int minimum_number_of_elements = 1;
 const int program_failure_code = -1;
 int number_of_elements;

 printf("How many elements would you like ");
 printf("the array to have (at least %d)?\n",
 minimum_number_of_elements);
 scanf("%d", &number_of_elements);
 if (number_of_elements < minimum_number_of_elements) {
 printf(You can't have fewer than ");
 printf("%d elements.\n", minimum_number_of_elements);
 exit(program_failure_code);
 } /* if (number_of_elements < ...) */
 return number_of_elements;
} /* input_number_of_elements */

This function has the side effect of outputting a prompt message
to the user, as well as of idiotproofing (that is,
outputting an error message and terminating if needed).

Side Effects #2

17User Defined Functions Lesson 2
CS1313 Spring 2025

Function prototype

% cat userarray.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int first_element = 1;
 const int program_success_code = 0;
 const int program_failure_code = -1;
 float* element_value = (float*)NULL;
 int number_of_elements;
 int index;
 int input_number_of_elements();

Side Effects Example #1

18User Defined Functions Lesson 2
CS1313 Spring 2025

number_of_elements =
 input_number_of_elements();
 printf("The number of elements that you\n");
 printf(" plan to input is %d.\n",
 number_of_elements);
 element_value =
 (float*)malloc(sizeof(float) *
 number_of_elements);
 if (element_value == (float*)NULL) {
 printf("ERROR: couldn't allocate the array\n");
 printf(" named element_value of %d elements.\n",
 number_of_elements);
 exit(program_failure_code);
 } /* if (element_value == (float*)NULL) */
 free(element_value);
 element_value = (float*)NULL;
 return program_success_code;
} /* main */

Side Effects Example #2

19
User Defined Functions Lesson 2

CS1313 Spring 2025

int input_number_of_elements ()
{ /* input_number_of_elements */
 const int minimum_number_of_elements = 1;
 const int program_failure_code = -1;
 int number_of_elements;

 printf("How many elements would you like\n");
 printf(" the array to have (at least %d)?\n",
 minimum_number_of_elements);
 scanf("%d", &number_of_elements);
 if (number_of_elements < minimum_number_of_elements) {
 printf(You can't have fewer than ");
 printf("%d elements.\n", minimum_number_of_elements);
 exit(program_failure_code);
 } /* if (number_of_elements < ...) */
 return number_of_elements;
} /* input_number_of_elements */

Side Effects Example #3

20User Defined Functions Lesson 2
CS1313 Spring 2025

% gcc -o userarray userarray.c inputnumelts.c
% userarray
How many elements would you like
 the array to have (at least 1)?
5
The number of elements that you plan to input is 5.

Side Effects Example #4

21User Defined Functions Lesson 2
CS1313 Spring 2025

int input_elements (float* element_value,
 int number_of_elements)
{ /* input_elements */
 const int first_element = 0;
 int index;

 printf("What are the %d elements ",
 number_of_elements);
 printf("of the array?\n");
 for (index = first_element;
 index < number_of_elements; index++) {
 scanf("%f", &element_value[index]);
 } /* for index */
 return ???;
} /* input_elements */

What on earth are we going to return?

A Function That Doesn’t Return a Value #1

22User Defined Functions Lesson 2
CS1313 Spring 2025

What on earth are we going to return?
The best answer is, we’re not going to return anything.
But if we’re not returning anything, then what return type

should the function have?
In C, we have a special data type to use as the return type of

a function that doesn’t return anything: void.
Thus, a void function is a function whose return type is void,

and which therefore returns nothing at all.

A Function That Doesn’t Return a Value #2

23User Defined Functions Lesson 2
CS1313 Spring 2025

A void function is exactly like a typical function, except that
its return type is void, which means that it
returns nothing at all.

void input_elements (float* element_value,
 int number_of_elements)
{ /* input_elements */
 const int first_element = 0;
 int index;

 printf("What are the %d elements ",
 number_of_elements);
 printf("of the array?\n");
 for (index = first_element;
 index < number_of_elements; index++) {
 scanf("%f", &element_value[index]);
 } /* for index */
} /* input_elements */

void Functions #1

24User Defined Functions Lesson 2
CS1313 Spring 2025

A void function is invoked simply by the name of the function
and its arguments (for example, in the main function):

 input_elements(element_value, number_of_elements);

Notice that a void function must have side effects to be useful.

void Functions #2

25User Defined Functions Lesson 2
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int first_element = 0;
 const int program_failure_code = -1;
 const int program_success_code = 0;
 float* element_value = (float*)NULL;
 int number_of_elements;
 int index;
 int input_number_of_elements();
 void input_elements(float* element_value,
 int number_of_elements);

void Function Call Example #1

26User Defined Functions Lesson 2
CS1313 Spring 2025

number_of_elements =
 input_number_of_elements();
 element_value =
 (float*)malloc(sizeof(float) *
 number_of_elements);
 if (element_value == (float*)NULL) {
 printf("ERROR: couldn't allocate the array\n");
 printf(" named element_value of ");
 printf("%d elements.\n", number_of_elements);
 exit(program_failure_code);
 } /* if (element_value == (float*)NULL) */

void Function Call Example #2

27User Defined Functions Lesson 2
CS1313 Spring 2025

input_elements(element_value, number_of_elements);
 printf("The %d elements are:\n",
 number_of_elements);
 for (index = first_element;
 index < number_of_elements; index++) {
 printf("%f ", element_value[index]);
 } /* for index */
 printf("\n");
 free(element_value);
 element_value = (float*)NULL;
 return program_success_code;
} /* main */

void Function Call Example #3

28User Defined Functions Lesson 2
CS1313 Spring 2025

% gcc -o userarray2 userarray2.c inputnumelts.c \
 inputarrayvoidfunc.c
% userarray2
How many elements would you like
 the array to have (at least 1)?
5
What are the 5 elements of the array?
1 8 25 27 32
The 5 elements are:
1.000000 8.000000 25.000000 27.000000 32.000000

void Function Call Example #4

29User Defined Functions Lesson 2
CS1313 Spring 2025

1. Bug avoidance: Since we don’t have to retype the function
from scratch every time we use it, we aren’t constantly
making new and exciting typos.

2. Implementation efficiency: We aren’t wasting valuable
programming time ($8 - $100s per programmer per hour) on
writing commonly used functions from scratch.

3. Verification: We can test a function under every conceivable
case, so that we’re confident that it works, and then we don’t
have to worry about whether the function has bugs when we
use it in a new program.

Why Do We Like Code Reuse?

30User Defined Functions Lesson 2
CS1313 Spring 2025

1. Code Reuse
2. Encapsulation: We can write a function that packages

an important concept (for example, the cube root). That way,
we don’t have to litter our program with cube root calculations.
So, someone reading our program will be able to tell
immediately that, for example, a particular statement has a cube
root in it, instead of constantly having to figure out what
pow(x, 1.0/3.0) means.

3. Modular Programming: If we make a bunch of encapsulations,
then we can have our main function simply call a bunch of
functions. That way, it’s easy for someone reading our code to
tell what’s going on in the main function, and then to look at
individual functions to see how they work.

Why Do We Like User-Defined Functions?

	User Defined Functions 2 Outline
	Argument Order When Passing Arrays #1
	Argument Order When Passing Arrays #2
	Code Reuse Is GOOD GOOD GOOD #1
	Code Reuse Is GOOD GOOD GOOD #2
	Actual vs. Formal Arguments #1
	Actual vs. Formal Arguments #2
	Argument Order
	Argument Order in Function: Arbitrary #1
	Argument Order in Function: Arbitrary #2
	Actual EXACTLY MATCH Formal #1
	Actual EXACTLY MATCH Formal #2
	Argument Order Convention #1
	Argument Order Convention #2
	Side Effects #1
	Side Effects #2
	Side Effects Example #1
	Side Effects Example #2
	Side Effects Example #3
	Side Effects Example #4
	A Function That Doesn’t Return a Value #1
	A Function That Doesn’t Return a Value #2
	void Functions #1
	void Functions #2
	void Function Call Example #1
	void Function Call Example #2
	void Function Call Example #3
	void Function Call Example #4
	Why Do We Like Code Reuse?
	Why Do We Like User-Defined Functions?

