
1Structures Lesson
CS1313 Spring 2025

20. Structure Fields Like Array Elements #1
21. Structure Fields Like Array Elements #2
22. Structure Example #1
23. Structure Example #2
24. Structure Example #3
25. Structure Example #4
26. Structure Example #5
27. Structure Array
28. Structure Array: Static vs Dynamic
29. Structure Array: Dynamic Allocation
30. Structure Array: Indexing
31. Structure Array: Element’s Field Access
32. Structure Array Example #1
33. Structure Array Example #2
34. Structure Array Example #3
35. Structure Array Example #4
36. Structure Array Example #5
37. Structure Array Example #6
38. Structure Array Example #7
39. Structure Array Example #8
40. Structure Array Example #9

1. Structures Lesson Outline
2. Beyond Arrays
3. A Company and Its Employees #1
4. A Company and Its Employees #2
5. Multiple Employees #1
6. Multiple Employees #2
7. Multiple Employees #3
8. A New Data Type #1
9. A New Data Type #2
10. A New Data Type #3
11. Structure Definition Breakdown
12. Structure Instance Declaration #1
13. Structure Instance Declaration #2
14. Structure Instance Declaration #3
15. Structure Instance Declaration #4
16. Fields of a Structure Instance #1
17. Fields of a Structure Instance #2
18. Fields of a Structure Instance #3
19. Fields of a Structure Instance #4

Structures Lesson Outline

2Structures Lesson
CS1313 Spring 2025

37 37 68 31 31 35 49 27 26 49 60 28

An array is a collection of values, all of which have
the same data type and the same essential meaning:
float* list1_input_value = (float*)NULL;

In memory, the elements of the array are contiguous:
they occur one after the other in memory.

What if, instead of having a collection of data that all have
the same data type and meaning, we had a collection of data
that had different data types and different meanings?

Beyond Arrays

3Structures Lesson
CS1313 Spring 2025

Suppose that we work for some company, and our boss tells us
to write a program that tracks the company’s employees.

What data will we need?
Well, we’ll probably need to know things like:
 first name;
 last name;
 pay rate;
 number of hours worked this week;
 social security number.
How could we implement this in C?

A Company and Its Employees #1

4Structures Lesson
CS1313 Spring 2025

How could we implement this in C?
Well, we could simply set up

a scalar variable
to represent each of these values
(and strings for the names):

 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
Of course, this arrangement would only work

if our company had exactly one employee.
But what if our company has multiple employees?

A Company and Its Employees #2

5Structures Lesson
CS1313 Spring 2025

Okay, so suppose that the company has multiple employees.
How could we store the data for them?

Well, we could have an array for each of the pieces of data:
char* first_name[number_of_employees];

char* last_name[number_of_employees];

float pay_rate[number_of_employees];

float hours_worked_this_week[number_of_employees];

int social_security_number[number_of_employees];

Multiple Employees #1

6Structures Lesson
CS1313 Spring 2025

char* first_name[number_of_employees];

char* last_name[number_of_employees];

float pay_rate[number_of_employees];

float hours_worked_this_week[number_of_employees];

int social_security_number[number_of_employees];

This approach will work fine, but it’ll be unwieldy to work with.
Why? Because it doesn’t match the way that we think about

our employees.
That is, we don’t think of having several first names,

several last names, several social security numbers and so on;
we have several employees.

Multiple Employees #2

7Structures Lesson
CS1313 Spring 2025

We don’t think of having several first names,
several last names, several social security numbers and so on.

Instead, we think of having several employees, each of whom
has a first name, a last name, a social security number, etc.

In general, it’s much easier to write a program if we can write it
in a way that matches the way we think as much as possible.

So: What if we could create a new data type,
named Employee, to represent an employee?

Multiple Employees #3

8Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
The above declaration creates a new data type,

named Employee.
This is known as a user-defined data type or

a user-defined data structure.
(Here, “user” means the programmer, not the person running

the program, just as in “user-defined function.”)

A New Data Type #1

9Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
The user-defined data type Employee consists of:
 a character string, first_name;
 a character string, last_name;
 a float scalar, pay_rate;
 a float scalar, hours_worked_this_week;
 an int scalar, social_security_number.

A New Data Type #2

10Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
In C, this construct is referred to as a structure definition,

because (surprise!) it defines a structure.
The general term for this is a user-defined data type.
NOTE: A structure definition, as above, only defines

the new data type; it DOESN’T DECLARE
any actual instances of data of the new data type.

A New Data Type #3

11Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
A structure definition consists of:
 a typedef struct statement and block open {;
 a sequence of field definitions, which tell us (and the compiler)

the pieces of data that constitute an instance of the structure;
 a block close } and the name of the structure,

followed by a statement terminator.

Structure Definition Breakdown

12Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
The above struct definition defines

the struct named Employee,
but DOESN’T DECLARE
any instance of data whose data type is Employee.

Structure Instance Declaration #1

13Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
To declare an instance of an Employee, we need to do like so:

Employee worker_bee;

Structure Instance Declaration #2

14Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;

The last statement above declares that worker_bee is
an instance of type Employee.

The declaration statement tells the compiler to
grab a group of bytes, name them worker_bee, and
think of them as storing an Employee.

Structure Instance Declaration #3

15Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;

How many bytes?
That depends on the platform and the compiler, but

the short answer is that it’s the sum of the sizes of the fields.

Structure Instance Declaration #4

16Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;

Okay, so now we have
an instance of data type Employee named worker_bee.

But how can we use the values of its field data?
For example, how do we get the social security number of
worker_bee?

Fields of a Structure Instance #1

17Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;

To use an individual field of a struct, we use
the field operator, which is the period:

worker_bee.social_security_number

Fields of a Structure Instance #2

18Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;

For example, we can assign a value to the social security number
of worker_bee:

 worker_bee.social_security_number = 123456789;

This is equivalent to using an index in an array:
 list1_input_value[element] = 24.5;

Fields of a Structure Instance #3

19Structures Lesson
CS1313 Spring 2025

typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
} Employee;
Employee worker_bee;
Likewise, we can output the social security number of
worker_bee:

printf("%d\n", worker_bee.social_security_number);

This is equivalent to using an index in an array:
printf("%f\n", list1_input_value[element]);

Fields of a Structure Instance #4

20Structures Lesson
CS1313 Spring 2025

We said that we can use the field operator (period) to get
an individual field of an instance of a struct:

worker_bee.social_security_number = 123456789;

printf("%d\n", worker_bee.social_security_number);

Notice that this usage is analogous to the use of an index with
an array:

list1_input_value[element] = 24.5;

printf("%f\n", list1_input_value[element]);

Structure Fields Like Array Elements #1

21Structures Lesson
CS1313 Spring 2025

In the case of arrays, we said that
an individual element of an array
behaves exactly like a scalar of the same data type.

Likewise, a field of a struct behaves exactly like
a variable of the same data type as the field.

For example:
 worker_bee.social_security_number

can be used exactly like an int scalar;
 worker_bee.pay_rate

can be used exactly like a float scalar;
 worker_bee.first_name

can be used exactly like a character string.

Structure Fields Like Array Elements #2

22Structures Lesson
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()
{ /* main */
 typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
 } Employee;
 const int maximum_name_length = 32;
 const int program_failure_code = -1;
 const int program_success_code = 0;
 Employee worker_bee;
 char dummy_name[maximum_name_length + 1];
 float worker_bee_pay;

Structure Example #1

23Structures Lesson
CS1313 Spring 2025

Huh?

printf("What is the first name of the employee?\n");
 fgets(dummy_name, maximum_name_length, stdin);
 if (dummy_name[strlen(dummy_name)-1] == ’\n’) {
 dummy_name[strlen(dummy_name)-1] = ’\0’;
 } /* if (dummy_name[strlen(dummy_name)-1]==’\n’) */
 worker_bee.first_name =
 (char*)malloc(sizeof(char) *
 (strlen(dummy_name) + 1));
 strcpy(worker_bee.first_name, dummy_name);
 printf("What is the last name of the employee?\n");
 fgets(dummy_name, maximum_name_length, stdin);
 if (dummy_name[strlen(dummy_name)-1] == ’\n’) {
 dummy_name[strlen(dummy_name)-1] = ’\0’;
 } /* if (dummy_name[strlen(dummy_name)-1]==’\n’) */
 worker_bee.last_name =
 (char*)malloc(sizeof(char) *
 (strlen(dummy_name) + 1));

Structure Example #2

24Structures Lesson
CS1313 Spring 2025

strcpy(worker_bee.last_name, dummy_name);
 printf("What is %s %s’s pay rate in $/hour?\n",
 worker_bee.first_name, worker_bee.last_name);
 scanf("%f", &worker_bee.pay_rate);
 printf("How many hours did %s %s work this week?\n",
 worker_bee.first_name, worker_bee.last_name);
 scanf("%f", &worker_bee.hours_worked_this_week);
 printf("What is %s %s’s social security number?\n",
 worker_bee.first_name, worker_bee.last_name);
 scanf("%d", &worker_bee.social_security_number);

Structure Example #3

25Structures Lesson
CS1313 Spring 2025

worker_bee_pay =
 worker_bee.pay_rate *
 worker_bee.hours_worked_this_week;
 printf("Employee %s %s (%9.9d)\n",
 worker_bee.first_name,
 worker_bee.last_name,
 worker_bee.social_security_number);
 printf(" worked %2.2f hours this week\n",
 worker_bee.hours_worked_this_week);
 printf(" at a rate of $%2.2f per hour,\n",
 worker_bee.pay_rate);
 printf(" earning $%2.2f.\n", worker_bee_pay);
 return program_success_code;
} /* main */

Structure Example #4

26Structures Lesson
CS1313 Spring 2025

% gcc -o employee_test employee_test.c
% employee_test
What is the first name of the employee?
Henry
What is the last name of the employee?
Neeman
What is Henry Neeman’s pay rate in $/hour?
12.5
How many hours did Henry Neeman work this week?
22.75
What is Henry Neeman’s social security number?
123456789
Employee Henry Neeman (123456789)
 worked 22.75 hours this week
 at a rate of $12.50 per hour,
 earning $284.38.

Structure Example #5

27Structures Lesson
CS1313 Spring 2025

When we started working on this task, we wanted to figure out
a convenient way to store
the many employees of the company.

So far, we’ve worked out how to define a structure,
how to declare an individual instance of the struct,
and how to use the fields of the instance.

So, how would we declare and use an array of instances of
a struct?

Employee worker_bee_array[maximum_employees];

Structure Array

28Structures Lesson
CS1313 Spring 2025

Employee worker_bee_array[maximum_employees];

Not surprisingly, an array whose elements are a struct
can either be declared to be statically allocated (above) or
dynamically allocatable (below):

Employee* worker_bee_array2 = (Employee*)NULL;

Structure Array: Static vs Dynamic

29Structures Lesson
CS1313 Spring 2025

Employee* worker_bee_array2 = (Employee*)NULL;

If a struct array is declared to be dynamically allocatable,
then allocating it looks just like allocating an array of a
scalar data type:

worker_bee_array2 =

 (Employee*)malloc(sizeof(Employee) *

 number_of_employees);

Structure Array: Dynamic Allocation

30Structures Lesson
CS1313 Spring 2025

An individual element of an array of some struct data type
can be accessed using indexing, exactly as if it were
an element of an array of scalar data type:

worker_bee_array[index]

Structure Array: Indexing

31Structures Lesson
CS1313 Spring 2025

Fields of an individual element of an array of a struct
data type can be accessed thus:

worker_bee_array[index].pay_rate

For example:

worker_bee_array[index].pay_rate = 6.50;

printf("%f\n", worker_bee_array[index].pay_rate);

Structure Array: Element’s Field Access

32Structures Lesson
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main ()
{ /* main */
 typedef struct {
 char* first_name;
 char* last_name;
 float pay_rate;
 float hours_worked_this_week;
 int social_security_number;
 } Employee;
 const int maximum_name_length = 32;
 const int program_failure_code = -1;
 const int program_success_code = 0;
 Employee* worker_bee = (Employee*)NULL;
 float* worker_bee_pay = (float*)NULL;
 char dummy_name[maximum_name_length + 1];
 int number_of_worker_bees, index;

Structure Array Example #1

33Structures Lesson
CS1313 Spring 2025

printf("How many employees does the company have?\n");
scanf("%d", &number_of_worker_bees);
worker_bee =
 (Employee*)malloc(sizeof(Employee) *
 number_of_worker_bees);
if (worker_bee == (Employee*)NULL) {
 printf("ERROR: can’t allocate worker_bee array ");
 printf("of length %d Employees\n",
 number_of_worker_bees);
 exit(program_failure_code);
} /* if (worker_bee == (Employee*)NULL) */
worker_bee_pay = (float*)malloc(sizeof(float) *
 number_of_worker_bees);
if (worker_bee_pay == (float*)NULL) {
 printf("ERROR: can’t allocate worker_bee_pay ");
 printf("array of length %d floats",
 number_of_worker_bees);
 exit(program_failure_code);
} /* if (worker_bee_pay == (float*)NULL) */

Structure Array Example #2

34Structures Lesson
CS1313 Spring 2025

for (index = 0;
 index < number_of_worker_bees; index++) {
 /* I DO NOT UNDERSTAND WHY THIS IS NEEDED! */
 getchar();
 printf("What is the first name of ");
 printf("employee #%d?\n", index);
 fgets(dummy_name, maximum_name_length, stdin);
 if (dummy_name[strlen(dummy_name)-1] == ’\n’) {
 dummy_name[strlen(dummy_name)-1] = ’\0’;
 } /* if (dummy_name[strlen(dummy_name)-1]...) */
 worker_bee[index].first_name =
 (char*)malloc(sizeof(char) *
 (strlen(dummy_name) + 1));
 strcpy(worker_bee[index].first_name,
 dummy_name);

Structure Array Example #3

35Structures Lesson
CS1313 Spring 2025

printf("What is the last name of ");
 printf("employee #%d?\n", index);
 fgets(dummy_name, maximum_name_length, stdin);
 if (dummy_name[strlen(dummy_name)-1] == ’\n’) {
 dummy_name[strlen(dummy_name)-1] = ’\0’;
 } /* if (dummy_name[strlen(dummy_name)-1]...) */
 worker_bee[index].last_name =
 (char*)malloc(sizeof(char) *
 (strlen(dummy_name) + 1));
 strcpy(worker_bee[index].last_name,
 dummy_name);

Structure Array Example #4

36Structures Lesson
CS1313 Spring 2025

printf("What is %s %s’s pay rate in $/hour?\n",
 worker_bee[index].first_name,
 worker_bee[index].last_name);
 scanf("%f", &worker_bee[index].pay_rate);
 printf("How many hours did %s %s work ",
 worker_bee[index].first_name,
 worker_bee[index].last_name);
 printf("this week?\n");
 scanf("%f",
 &worker_bee[index].hours_worked_this_week);
 printf("What is %s %s’s ",
 worker_bee[index].first_name,
 worker_bee[index].last_name);
 printf("social security number?\n");
 scanf("%d",
 &worker_bee[index].social_security_number);
 } /* for index */

Structure Array Example #5

37Structures Lesson
CS1313 Spring 2025

for (index = 0;

 index < number_of_worker_bees; index++) {

 worker_bee_pay[index] =

 worker_bee[index].pay_rate *

 worker_bee[index].hours_worked_this_week;

 } /* for index */

Structure Array Example #6

38Structures Lesson
CS1313 Spring 2025

for (index = 0;
 index < number_of_worker_bees; index++) {
 printf("Employee %s %s (%9.9d)\n",
 worker_bee[index].first_name,
 worker_bee[index].last_name,
 worker_bee[index].social_security_number);
 printf(" worked %2.2f hours this week\n",
 worker_bee[index].hours_worked_this_week);
 printf(" at a rate of $%2.2f per hour,\n",
 worker_bee[index].pay_rate);
 printf(" earning $%2.2f.\n",
 worker_bee_pay[index]);
 } /* for index */
 return program_success_code;
} /* main */

Structure Array Example #7

39Structures Lesson
CS1313 Spring 2025

% gcc -o employee_array_test employee_array_test.c
% employee_array_test
How many employees does the company have?
2
What is the first name of employee #0?
Henry
What is the last name of the employee #0?
Neeman
What is Henry Neeman’s pay rate in $/hour?
12.5
How many hours did Henry Neeman work this week?
22.75
What is Henry Neeman’s social security number?
123456789

Structure Array Example #8

40Structures Lesson
CS1313 Spring 2025

What is the first name of employee #1?
Lee
What is the last name of the employee #1?
Kim
What is Lee Kim’s pay rate in $/hour?
8.75
How many hours did Lee Kim work this week?
40
What is Lee Kim’s social security number?
987654321
Employee Henry Neeman (123456789)
 worked 22.75 hours this week
 at a rate of $12.50 per hour,
 earning $284.38.
Employee Lee Kim (987654321)
 worked 40.00 hours this week
 at a rate of $8.75 per hour,
 earning $350.00.

Structure Array Example #9

	Structures Lesson Outline
	Beyond Arrays
	A Company and Its Employees #1
	A Company and Its Employees #2
	Multiple Employees #1
	Multiple Employees #2
	Multiple Employees #3
	A New Data Type #1
	A New Data Type #2
	A New Data Type #3
	Structure Definition Breakdown
	Structure Instance Declaration #1
	Structure Instance Declaration #2
	Structure Instance Declaration #3
	Structure Instance Declaration #4
	Fields of a Structure Instance #1
	Fields of a Structure Instance #2
	Fields of a Structure Instance #3
	Fields of a Structure Instance #4
	Structure Fields Like Array Elements #1
	Structure Fields Like Array Elements #2
	Structure Example #1
	Structure Example #2
	Structure Example #3
	Structure Example #4
	Structure Example #5
	Structure Array
	Structure Array: Static vs Dynamic
	Structure Array: Dynamic Allocation
	Structure Array: Indexing
	Structure Array: Element’s Field Access
	Structure Array Example #1
	Structure Array Example #2
	Structure Array Example #3
	Structure Array Example #4
	Structure Array Example #5
	Structure Array Example #6
	Structure Array Example #7
	Structure Array Example #8
	Structure Array Example #9

