
1CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

20. Programming: Return Type
21. More on Function Arguments
22. Function Argument Example Part 1
23. Function Argument Example Part 2
24. Function Argument Example Part 3
25. Using the C Standard Math Library
26. Function Call in Assignment
27. Function Call in printf
28. Function Call as Argument
29. Function Call in Initialization
30. Function Use Example Part 1
31. Function Use Example Part 2
32. Function Use Example Part 3
33. Function Use Example Part 4
34. Evaluation of Functions in Expressions
35. Evaluation Example #1
36. Evaluation Example #2
37. Exercise: Calculating Roots

1. Standard Library Functions Outline
2. Functions in Mathematics #1
3. Functions in Mathematics #2
4. Functions in Mathematics #3
5. Function Argument
6. Absolute Value Function in C #1
7. Absolute Value Function in C #2
8. Absolute Value Function in C #3
9. A Quick Look at abs
10. Function Call in Programming
11. Math Function vs Programming

Function
12. C Standard Library
13. C Standard Library Function Examples
14. Is the Standard Library Enough?
15. Math: Domain & Range #1
16. Math: Domain & Range #2
17. Math: Domain & Range #3
18. Programming: Argument Type
19. Argument Type Mismatch

Standard Library Functions Outline

2CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

…
f(-2.5) = -2.5 + 1 = -1.5

f(-2) = -2 + 1 = -1
f(-1) = -1 + 1 = 0
f(0) = 0 + 1 = +1

f(+1) = +1 + 1 = +2
f(+2) = +2 + 1 = +3

f(+2.5) = +2.5 + 1 = +3.5
…

“A rule that relates two variables, typically x and y,
is called a function if to each value of x
the rule assigns one and only one value of y.”

http://www.themathpage.com/aPreCalc/functions.htm

So, for example, if we have a function
f(x) = x + 1

then we know that

Functions in Mathematics #1

http://www.themathpage.com/aPreCalc/functions.htm

3CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

…

f(-2.5) = -2.5 + 1 = -1.5
f(-2) = -2 + 1 = -1
f(-1) = -1 + 1 = 0
f(0) = 0 + 1 = +1

f(+1) = +1 + 1 = +2
f(+2) = +2 + 1 = +3

f(+2.5) = +2.5 + 1 = +3.5
…

For example, if we have a function
f(x) = x + 1

then we know that

Functions in Mathematics #2

4CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

…
a(-2.5) = | -2.5 | = +2.5

a(-2) = | -2 | = +2
a(-1) = | -1 | = +1
a(0) = | 0 | = 0

a(+1) = | +1 | = +1
a(+2) = | +2 | = +2

a(+2.5) = | +2.5 | = +2.5
…

Likewise, if we have a function
a(y) = | y |

then we know that

Functions in Mathematics #3

5CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

f(x) = x + 1
a(y) = | y |

We refer to the thing inside the parentheses
immediately after the name of the function as
the argument (also known as the parameter) of the function.

In the examples above:
 the argument of the function named f is x;
 the argument of the function named a is y.

NOTE: A function can have zero, or one, or multiple arguments.

Function Argument

6CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

In my_number.c, we saw this:
...
else if (abs(users_number – computers_number) <=
 close_distance) {
 printf("Close, but no cigar.\n");
} /* if (abs(...) <= close_distance) */...
So, what does abs do?

The abs function calculates the absolute value of its argument.
It’s the C analogue of the mathematical function

a(y) = | y |
(the absolute value function) that we just looked at.

Absolute Value Function in C #1

7CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

…

fabs(-2.5) returns 2.5

abs(-2) returns 2

abs(-1) returns 1

abs(0) returns 0

abs(1) returns 1

abs(2) returns 2

fabs(2.5) returns 2.5

…

Absolute Value Function in C #2

8CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

We say “abs of -2 evaluates to 2” or “abs of -2 returns 2.”

Note:
• abs calculates the absolute value of an int argument;
• fabs calculates the absolute value of a float argument.

Absolute Value Function in C #3

9CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

% cat abs_test.c
#include <stdio.h>
#include <math.h>
int main ()
{ /* main */
 const int program_success_code = 0;
 printf("fabs(-2.5) = %f\n", fabs(-2.5));
 printf(" abs(-2) = %d\n", abs(-2));
 printf(" abs(-1) = %d\n", abs(-1));
 printf(" abs(0) = %d\n", abs(0));
 printf(" abs(1) = %d\n", abs(1));
 printf(" abs(2) = %d\n", abs(2));
 printf("fabs(2.5) = %f\n", fabs(2.5));
 return program_success_code;
} /* main */
% gcc -o abs_test abs_test.c -lm
% abs_test
fabs(-2.5) = 2.500000
 abs(-2) = 2
 abs(-1) = 1
 abs(0) = 0
 abs(1) = 1
 abs(2) = 2
fabs(2.5) = 2.500000

A Quick Look at abs

10CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Jargon: In programming, the use of a function in an expression
is known as an invocation, or more informally as a call.

We say that:
printf("%d\n", abs(-2));

 the statement calls (or invokes) the function abs;
 the statement passes an argument of -2 to the function;
 the function abs returns a value of 2.

Function Call in Programming

11CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

An important distinction between a function in mathematics
and a function in programming:

A function in mathematics is simply
a definition (“this name means that expression”),
whereas a function in programming is
an action (“that name means execute that sequence of statements”).

More on this later.

Math Function vs Programming Function

12CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Every implementation of C comes with
a standard library of predefined functions.

Note that, in programming,
a library is a collection of functions.

The functions that are common to all versions of C
are known as the C Standard Library.

On the next slide are examples of just a few of
the functions in the C standard library, specifically
some of the functions in the C Standard Math Library.

C Standard Library

13CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Function
Name

Math
Name Value Example

abs(x) absolute value |x| abs(-1) returns 1
sqrt(x) square root x0.5 sqrt(2.0) returns 1.414…
exp(x) exponential ex exp(1.0) returns 2.718…
log(x) natural logarithm ln x log(2.718…) returns 1.0
log10(x) common logarithm log x log10(100.0) returns 2.0
sin(x) sine sin x sin(3.14…) returns 0.0
cos(x) cosine cos x cos(3.14…) returns -1.0
tan(x) tangent tan x tan(3.14…) returns 0.0
ceil(x) ceiling ┌ x ┐ ceil(2.5) returns 3.0
floor(x) floor └ x ┘ floor(2.5) returns 2.0

C Standard Math Library Function Examples

14CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

It turns out that the set of C Standard Library functions is
grossly insufficient for most real world tasks.

So, in C, and in most programming languages,
there are ways for programmers to develop their own
user-defined functions.

We’ll learn more about user-defined functions in a future lesson.

Here, the term “user-defined” really means programmer-defined
– that is, the “user” of the programming language
(and of the compiler) is the programmer.

Is the Standard Library Enough?

15CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

In mathematics:
 The domain of a function is the set of numbers

that can be used for the argument(s) of that function.
 The range is the set of numbers

that can be the result of that function.

Math: Domain & Range #1

16CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

For example, in the case of the function
f(x) = x + 1

we can define the domain of the function f to be
the set of real numbers (sometimes denoted R),
which means that the x in f(x) can be any real number.

Similarly, we define the range of the function f to be
the set of real numbers, because
for every real number y there is some real number x
such that f(x) = y.

But, if we feel like it, we could define the domain of f to be
the set of integers (sometimes denoted Z, for
the German word Zahlen, meaning “numbers”),
in which case its range would also be Z.

Math: Domain & Range #2

17CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

On the other hand, for a function
q(x) = 1 / (x − 1)

the domain cannot include 1, because
q(1) = 1 / (1 – 1) = 1 / 0

which is infinity (in the limit).
So the domain of q might be R − {1}

(the set of all real numbers except 1).
In that case, the range of q would be R – {0}

(the set of all real numbers except 0), because
there’s no real number y such that 1/y is 0.

(Note: If you’ve taken calculus, you’ve seen that,
as y gets arbitrarily large, 1/y approaches 0 as a limit –
but “gets arbitrarily large” is not a real number, and
neither is “approaches 0 as a limit.”)

Math: Domain & Range #3

18CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Programming has concepts that are analogous to
the mathematical concepts of domain and range:
argument type and return type.

For a given function in C, the argument type –
which corresponds to the domain in mathematics –
is the data type that C expects for an argument to that function.

For example:
 the argument type of abs is int;
 the argument type of fabs is float.

Programming: Argument Type

19CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

An argument type mismatch is when
you pass an argument of a particular data type
to a function that expects a different data type
for that argument.

Some C compilers WON’T check
whether the data type of the argument you pass is correct.

So if you pass the wrong data type,
you can get a bogus answer.

This problem is more likely to come up when
you pass a float where the function expects an int.

In the reverse case, typically C simply
promotes the int to a float.

Argument Type Mismatch

20CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Just as the programming concept of argument type
is analogous to the mathematical concept of domain,
likewise the programming concept of return type
is analogous to the mathematical concept of range.

The return type of a C function –
which corresponds to the range in mathematics –
is the data type of the value that the function returns.

The return value is guaranteed to have that data type,
and the compiler gets upset – or you get a bogus result –
if you use the return value inappropriately.

Programming: Return Type

21CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

In mathematics, a function argument can be:
 a number:
 f(5) = 5 + 1 = 6
 a variable:
 f(z) = z + 1
 an arithmetic expression:
 f(5 + 7) = (5 + 7) + 1 = 12 + 1 = 13
 another function:
 f(a(w)) = |w| + 1
 any combination of these; i.e., any general expression

whose value is in the domain of the function:
 f(3a(5w + 7)) = 3 (|5w + 7|) + 1
Likewise, in C the argument of a function can be

any non-empty expression
that evaluates to the appropriate data type,
including an expression containing a function call.

More on Function Arguments

22CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

#include <stdio.h>
#include <math.h>

int main ()
{ /* main */
 const float pi = 3.1415926;
 const int program_success_code = 0;
 float angle_in_radians;
 printf("cos(%10.7f) = %10.7f\n",
 1.5707963, cos(1.5707963));
 printf("cos(%10.7f) = %10.7f\n", pi, cos(pi));
 printf("Enter an angle in radians:\n");
 scanf("%f", &angle_in_radians);
 printf("cos(%10.7f) = %10.7f\n",
 angle_in_radians, cos(angle_in_radians));
 printf("fabs(cos(%10.7f)) = %10.7f\n",
 angle_in_radians,
 fabs(cos(angle_in_radians)));

Function Argument Example Part 1

23CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

printf("cos(fabs(%10.7f)) = %10.7f\n",
 angle_in_radians,
 cos(fabs(angle_in_radians)));
 printf("fabs(cos(2.0 * %10.7f)) = %10.7f\n",
 angle_in_radians,
 fabs(cos(2.0 * angle_in_radians)));
 printf("fabs(2.0 * cos(%10.7f)) = %10.7f\n",
 angle_in_radians,
 fabs(2.0 * cos(angle_in_radians)));
 printf("fabs(2.0 * ");
 printf("cos(1.0 / 5.0 * %10.7f)) = %10.7f\n",
 angle_in_radians,
 fabs(2.0 *
 cos(1.0 / 5.0 * angle_in_radians)));
 return program_success_code;
} /* main */

Function Argument Example Part 2

24CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

% gcc -o function_arguments function_arguments.c -lm
% function_arguments
cos(1.5707963) = 0.0000000
cos(3.1415925) = -1.0000000
Enter an angle in radians:
-3.1415925
cos(-3.1415925) = -1.0000000
fabs(cos(-3.1415925)) = 1.0000000
cos(fabs(-3.1415925)) = -1.0000000
fabs(cos(2.0 * -3.1415925)) = 1.0000000
fabs(2.0 * cos(-3.1415925)) = 2.0000000
fabs(2.0 * cos(1.0 / 5.0 * -3.1415925)) = 1.6180340

Function Argument Example Part 3

25CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

If you’re going to use functions like cos that are from
the part of the C standard library that has to do with math,
then you need to do two things:

1. In your source code, immediately below the
 #include <stdio.h>
 you MUST also have
 #include <math.h>
2. When you compile, you must append -lm to the end of

your compile command:
 gcc -o function_arguments function_arguments.c –lm

 (Note that this is hyphen small-L small-M,
NOT hyphen one small-M.)

NOTE: -lm means “link to the C standard math library.”

Using the C Standard Math Library

26CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Function calls are used in expressions in
exactly the same ways that variables and constants are used.

For example, a function call can be used on
the right side of an assignment or initialization:

 float theta = 3.1415926 / 4.0;

 float cos_theta;

 …

 cos_theta = cos(theta);
 length_of_c_for_any_triangle =

 sqrt(a * a + b * b –
 2 * a * b * cos(theta));

Function Call in Assignment

27CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

A function call can also be used in an expression
in a printf statement:

 printf("%f\n", 2.0);

 printf("%f\n", pow(cos(theta), 2.0));

In CS1313, this usage is ABSOLUTELY FORBIDDEN,
because all calculations should get done in
the calculation subsection, NOT in the output subsection.

But the C programming language does permit this usage.

Function Call in printf

28CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Since any expression can be used as some function’s argument,
a function call can also be used
as an argument to another function:

const float pi = 3.1415926;

float complicated_expression;

...

complicated_expression =

 1.0 + cos(asin(sqrt(2.0) / 2.0) + pi));

Function Call as Argument

29CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

Most function calls can be used in initialization,
as long as its arguments are literal constants:

float cos_theta = cos(3.1415926);

This is true both in variable initialization and
in named constant initialization:

const float cos_pi = cos(3.1415926);

Function Call in Initialization

30CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

#include <stdio.h>
#include <math.h>

int main ()
{ /* main */
 const float pi = 3.1415926;
 const float cos_pi = cos(3.1415926);
 const float sin_pi = sin(pi);
 const int program_success_code = 0;
 float phi = 3.1415926 / 4.0;
 float cos_phi = cos(phi);
 float theta, sin_theta;

Function Use Example Part 1

31CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

theta = 3.0 * pi / 4;
 sin_theta = sin(theta);
 printf("2.0 = %f\n", 2.0);
 printf("pi = %f\n", pi);
 printf("theta = %f\n", theta);
 printf("cos(pi) = %f\n", cos(pi));
 printf("cos_pi = %f\n", cos_pi);
 printf("sin(pi) = %f\n", sin(pi));
 printf("sin_pi = %f\n", sin_pi);
 printf("sin(theta) = %f\n", sin(theta));
 printf("sin_theta = %f\n", sin_theta);
 printf("sin(theta)^(1.0/3.0) = %f\n",
 pow(sin(theta), (1.0/3.0)));

Function Use Example Part 2

32CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

printf("1 + sin(acos(1.0)) = %f\n",
 1 + sin(acos(1.0)));
 printf("sin(acos(1.0)) = %f\n",
 sin(acos(1.0)));
 printf("sqrt(2.0) = %f\n", sqrt(2.0));
 printf("sqrt(2.0) / 2 = %f\n", sqrt(2.0) / 2);
 printf("acos(sqrt(2.0)/2.0) = %f\n",
 acos(sqrt(2.0)/2.0));
 printf("sin(acos(sqrt(2.0)/2.0)) = %f\n",
 sin(acos(sqrt(2.0)/2.0)));
 return program_success_code;
} /* main */

Function Use Example Part 3

33CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

% gcc -o function_use function_use.c -lm
% function_use
2.0 = 2.000000
pi = 3.141593
theta = 2.356194
cos(pi) = -1.000000
cos_pi = -1.000000
sin(pi) = 0.000000
sin_pi = 0.000000
sin(theta) = 0.707107
sin_theta = 0.707107
sin(theta)^(1.0/3.0) = 0.890899
1 + sin(acos(1.0)) = 1.000000
sin(acos(1.0)) = 0.000000
sqrt(2.0) = 1.414214
sqrt(2.0) / 2 = 0.707107
acos(sqrt(2.0)/2.0) = 0.785398
sin(acos(sqrt(2.0)/2.0)) = 0.707107

Function Use Example Part 4

34CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

When a function call appears in an expression – for example,
on the right hand side of an assignment statement –
the function is evaluated just before its value is needed,
in accordance with the rules of precedence order.

Evaluation of Functions in Expressions

35CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

For example, suppose that x and y are float variables,
and that y has already been assigned the value -10.0.

Consider this assignment statement:
x = 1 + 2.0 * 8.0 + fabs(y) / 4.0;

Evaluation Example #1

36CS1313: Standard Library Functions Lesson
CS1313 Spring 2025

x = 1 + 2.0 * 8.0 + fabs(y) / 4.0;

x = 1 + 16.0 + fabs(y) / 4.0;

x = 1 + 16.0 + fabs(-10.0) / 4.0;

x = 1 + 16.0 + 10.0 / 4.0;

x = 1 + 16.0 + 2.5;

x = 1.0 + 16.0 + 2.5;

x = 17.0 + 2.5;

x = 19.5;

Evaluation Example #2

Exercise: Calculating Roots
Write a program that finds the Nth root of some real value, using
the pow function from the C Standard Math Library:
 greet the user;
 prompt for and input the base value;
 prompt for and input which root to calculate;
 calculate that root of that value;
 output that root of that value.
You don’t need to idiotproof nor to have comments.
Otherwise, all programming project rules apply, through PP#5.

CS1313: Standard Library Functions Lesson
CS1313 Spring 2025 37

	Standard Library Functions Outline
	Functions in Mathematics #1
	Functions in Mathematics #2
	Functions in Mathematics #3
	Function Argument
	Absolute Value Function in C #1
	Absolute Value Function in C #2
	Absolute Value Function in C #3
	A Quick Look at abs
	Function Call in Programming
	Math Function vs Programming Function
	C Standard Library
	C Standard Math Library Function Examples
	Is the Standard Library Enough?
	Math: Domain & Range #1
	Math: Domain & Range #2
	Math: Domain & Range #3
	Programming: Argument Type
	Argument Type Mismatch
	Programming: Return Type
	More on Function Arguments
	Function Argument Example Part 1
	Function Argument Example Part 2
	Function Argument Example Part 3
	Using the C Standard Math Library
	Function Call in Assignment
	Function Call in printf
	Function Call as Argument
	Function Call in Initialization
	Function Use Example Part 1
	Function Use Example Part 2
	Function Use Example Part 3
	Function Use Example Part 4
	Evaluation of Functions in Expressions
	Evaluation Example #1
	Evaluation Example #2
	Exercise: Calculating Roots

