Standard Library Functions Outline

1. Standard Library Functions Outline
2. Functions in Mathematics \#1
3. Functions in Mathematics \#2
4. Functions in Mathematics \#3
5. Function Argument
6. Absolute Value Function in C \#1
7. Absolute Value Function in C \#2
8. Absolute Value Function in C \#3
9. A Quick Look at abs
10. Function Call in Programming
11. Math Function vs Programming Function
12. C Standard Library
13. C Standard Library Function Examples
14. Is the Standard Library Enough?
15. Math: Domain \& Range \#1
16. Math: Domain \& Range \#2
17. Math: Domain \& Range \#3
18. Programming: Argument Type
19. Argument Type Mismatch
20. Programming: Return Type
21. More on Function Arguments
22. Function Argument Example Part 1
23. Function Argument Example Part 2
24. Function Argument Example Part 3
25. Using the C Standard Math Library
26. Function Call in Assignment
27. Function Call in printf
28. Function Call as Argument
29. Function Call in Initialization
30. Function Use Example Part 1
31. Function Use Example Part 2
32. Function Use Example Part 3
33. Function Use Example Part 4
34. Evaluation of Functions in Expressions
35. Evaluation Example \#1
36. Evaluation Example \#2
37. Exercise: Calculating Roots

Functions in Mathematics \#1

"A rule that relates two variables, typically x and y, is called a function if to each value of x the rule assigns one and only one value of y."
http://www.themathpage.com/aPreCalc/functions.htm
So, for example, if we have a function

$$
f(x)=x+1
$$

then we know that

$$
\begin{aligned}
f(-2.5) & =-2.5+1=-1.5 \\
f(-2) & =-2+1=-1 \\
f(-1) & =-1+1=0 \\
f(0) & =0+1=+1 \\
f(+1) & =+1+1=+2 \\
f(+2) & =+2+1=+3 \\
f(+2.5) & =+2.5+1=+3.5
\end{aligned}
$$

CS1313: Standard Library Functions Lesson CS1313 Spring 2024

Functions in Mathematics \#2

For example, if we have a function

$$
f(x)=x+1
$$

then we know that

$$
\begin{aligned}
f(-2.5) & =-2.5+1=-1.5 \\
f(-2) & =-2+1=-1 \\
f(-1) & =-1+1=0 \\
f(0) & =0+1=+1 \\
f(+1) & =+1+1=+2 \\
f(+2) & =+2+1=+3 \\
f(+2.5) & =+2.5+1=+3.5
\end{aligned}
$$

CS1313: Standard Library Functions Lesson

Functions in Mathematics \#3

Likewise, if we have a function
then we know that

$$
\begin{array}{rlrll}
a(-2.5) & =\mid-2.5 & & =+2.5 \\
a(-2) & =\mid-2 & \mid & =+2 \\
a(-1) & =\mid-1 & & =+1 \\
a(0) & =\mid 0 & & =0 \\
a(+1) & =\mid+1 & & =+1 \\
a(+2) & =\mid+2 & & =+2 \\
a(+2.5) & =\mid+2.5 & & =+2.5
\end{array}
$$

Function Argument

$$
\begin{gathered}
f(x)=x+1 \\
a(y)=|y|
\end{gathered}
$$

We refer to the thing inside the parentheses immediately after the name of the function as
the argument (also known as the parameter) of the function.
In the examples above:

- the argument of the function named f is x;
- the argument of the function named a is y.

NOTE: A function can have zero, or one, or multiple arguments.

Absolute Value Function in C \#1

In my_number.c, we saw this:

```
ëlse if (abs(users_number - computers_number) <=
                        close_distance) {
        printf("Close, but no cigar.\n");
} /* if (abs(...) <= close_distance) */
```

So, what does abs do?

The abs function calculates the absolute value of its argument. It's the C analogue of the mathematical function

$$
\mathrm{a}(y)=|y|
$$

(the absolute value function) that we just looked at.

Absolute Value Function in C \#2

fabs (-2.5)	returns	2.5
abs (-2)	returns	2
abs (-1)	returns	1
abs (0)	returns	0
$\operatorname{abs}(1)$	returns	1
$\operatorname{abs}(2)$	returns	2
fabs (2.5)	returns	2.5

Absolute Value Function in C \#3

We say "abs of -2 evaluates to 2 " or "abs of -2 returns $2 . "$
Note:

- abs calculates the absolute value of an int argument;
- fabs calculates the absolute value of a float argument.

A Quick Look at abs

\% cat abs test.c

int main ()
\{ /* main */
const int program_success_code $=0$;
printf("fabs (-2.5) = \%f\n", fabs(-2.5));
printf(" abs(-2) = \%d\n", abs(-2));
printf(" abs(-1) $=\% d \backslash n ", \quad a b s(-1))$;
printf(" abs (0) $=\% d \backslash n ", \quad \operatorname{abs}(0))$;
printf(" abs(1) = \%d\n", abs(1));
printf(" abs(2) = \%d\n", abs(2));
printf("fabs(2.5) = \%f\n", fabs(2.5));
return program_success_code;
\} /* main */
gcc -o abs_test abs_test.c -lm
\% abs test
fabs ($=2.5$) $=2.500000$
$\operatorname{abs}(-2)=2$
$\operatorname{abs}(-1)=1$
$\operatorname{abs}(0)=0$
$\operatorname{abs}(1)=1$
$\operatorname{abs}(2)=2$
fabs $(2.5)=2.500000$

Function Call in Programming

Jargon: In programming, the use of a function in an expression is known as an invocation, or more informally as a call.
We say that:
printf("\%d\n", abs(-2));

- the statement calls (or invokes) the function abs;
- the statement passes an argument of -2 to the function;
- the function abs returns a value of 2 .

Math Function vs Programming Function

An important distinction between a function in mathematics and a function in programming:
A function in mathematics is simply a definition ("this name means that expression"), whereas a function in programming is an action ("that name means execute that sequence of statements").
More on this later.

C Standard Library

Every implementation of C comes with a standard library of predefined functions.
Note that, in programming, a library is a collection of functions.
The functions that are common to all versions of C are known as the \boldsymbol{C} Standard Library.
On the next slide are examples of just a few of the functions in the C standard library.

C Standard Math Library Function Examples

Function Name	Math Name	Value	Example		
$\operatorname{abs}(x)$	absolute value	$\|x\|$	$\operatorname{abs}(-1)$	returns	1
$\operatorname{sqrt}(x)$	square root	$x^{0.5}$	$\operatorname{sqrt}(2.0)$	returns	$1.414 \ldots$
$\exp (x)$	exponential	e^{x}	$\exp (1.0)$	returns	$2.718 \ldots$
$\log (x)$	natural logarithm	$\ln x$	$\log (2.718 \ldots)$	returns	1.0
$\log 10(x)$	common logarithm	$\log x$	$\log 10(100.0)$	returns	2.0
$\sin (x)$	sine	$\sin x$	$\sin (3.14 \ldots)$	returns	0.0
$\cos (x)$	cosine	$\cos x$	$\cos (3.14 \ldots)$	returns	-1.0
$\tan (x)$	tangent	$\tan x$	$\tan (3.14 \ldots)$	returns	0.0
$\operatorname{ceil}(x)$	ceiling	$\Gamma x\urcorner$	$\operatorname{ceil}(2.5)$	returns	3.0
floor (x)	floor	$\operatorname{Lx}\rfloor$	floor (2.5)	returns	2.0

CS1313: Standard Library Functions Lesson

Is the Standard Library Enough?

It turns out that the set of C Standard Library functions is grossly insufficient for most real world tasks.
So, in C, and in most programming languages,
there are ways for programmers to develop their own user-defined functions.
We'll learn more about user-defined functions in a future lesson.

Here, the term "user-defined" really means programmer-defined

- that is, the "user" of the programming language (and of the compiler) is the programmer.

Math: Domain \& Range \#1

In mathematics:

- The domain of a function is the set of numbers that can be used for the argument(s) of that function.
- The range is the set of numbers that can be the result of that function.

Math: Domain \& Range \#2

For example, in the case of the function

$$
f(x)=x+1
$$

we can define the domain of the function f to be the set of real numbers (sometimes denoted \mathbb{R}), which means that the x in $f(x)$ can be any real number.
Similarly, we define the range of the function f to be the set of real numbers, because for every real number y there is some real number x such that $f(x)=y$.

But, if we feel like it, we could define the domain of f to be the set of integers (sometimes denoted Z , for the German word Zahlen, meaning "numbers"), in which case its range would also be Z .

Math: Domain \& Range \#3

On the other hand, for a function

$$
q(x)=1 /(x-1)
$$

the domain cannot include 1, because

$$
q(1)=1 /(1-1)=1 / 0
$$

which is infinity (in the limit).
So the domain of q might be $\mathbb{R}-\{1\}$
(the set of all real numbers except 1).
In that case, the range of q would be $\mathrm{R}-\{0\}$
(the set of all real numbers except 0), because there's no real number y such that $1 / y$ is 0 .
(Note: If you've taken calculus, you've seen that, as y gets arbitrarily large, $1 / y$ approaches 0 as a limit but "gets arbitrarily large" is not a real number, and neither is "approaches 0 as a limit.")

Programming: Argument Type

Programming has concepts that are analogous to the mathematical concepts of domain and range:
argument type and return type.
For a given function in C, the argument type which corresponds to the domain in mathematics is the data type that C expects for an argument to that function.
For example:

- the argument type of $a b s$ is int;
- the argument type of fabs is float.

Argument Type Mismatch

An argument type mismatch is when
you pass an argument of a particular data type to a function that expects a different data type for that argument.
Some C compilers WON'T check
whether the data type of the argument you pass is correct.
So if you pass the wrong data type,
you can get a bogus answer.
This problem is more likely to come up when you pass a float where the function expects an int.
In the reverse case, typically C simply promotes the int to a float.

Programming: Return Type

Just as the programming concept of argument type is analogous to the mathematical concept of domain, likewise the programming concept of return type is analogous to the mathematical concept of range.
The return type of a C function -
which corresponds to the range in mathematics is the data type of the value that the function returns.
The return value is guaranteed to have that data type, and the compiler gets upset - or you get a bogus result if you use the return value inappropriately.

More on Function Arguments

In mathematics, a function argument can be:

- a number:
$f(\overline{5})=5+1=6$
- a variable:
$f(z)=z+1$
- an arithmetic expression:
$f(5+7)=(5+7)+1=12+1=13$
- another function:
$f(a(w))=|w|+1$
- any combination of these; i.e., any general expression whose value is in the domain of the function: $f(3 a(5 w+7))=3(|5 w+7|)+1$
Likewise, in C the argument of a function can be any non-empty expression that evaluates to the appropriate data type, including an expression containing a function call.

CS1313: Standard Library Functions Lesson CS1313 Spring 2024

Function Argument Example Part 1

```
include <staio.h>
\#1nclude <math.h>
int main ()
\{ /* main */
    const float pi \(=3.1415926\);
    const int program_success_code \(=0\);
    float angle_in_radiāns;
    printf("cos (\%10.7f) \(=\% 10.7 f \backslash n "\),
        1.5707963, cos(1.5707963));
    printf("cos(\%10.7f) = \%10.7f\n", pi, cos(pi));
    printf("Enter an angle in radians:\n");
    scanf("\%f", \&angle_in_radians);
    printf("cos (\%10.7f) \(=-\% 10.7 f \backslash n "\),
        angle_in_radians, cos(angle_in_radians));
    printf("fābs \(\overline{\cos }(\% 10.7 \mathrm{f}))=\% 10 \overline{\mathrm{c}} 7 \mathrm{f} \overline{\mathrm{n}} \mathrm{n} "\),
    angle in radians,
    fabs(̄os(angle_in_radians)));
```


Function Argument Example Part 2

```
    printf("cos(fabs(%10.7f)) = %10.7f\n",
        angle in radians,
        cos(fābs(angle_in_radians)));
    printf("fabs(cos(2.0 * %10.7f)) = %10.7f\n",
        angle_in_radians,
        fabs(\overline{cos}(2.0 * angle_in_radians)));
printf("fabs(2.0 * cos(%10.7f)) = %10.7f\n",
    angle_in_radians,
    fabs(2.0 * cos(angle_in_radians)));
printf("fabs(2.0 * ");
printf("cos(1.0 / 5.0 * %10.7f)) = %10.7f\n",
    angle_in_radians,
    fabs(2.0 *
    cos(1.0 / 5.0 * angle_in_radians)));
    return program_success_code;
} /* main */

\section*{Function Argument Example Part 3}
\% gcc -o function_arguments function_arguments.c - -lm
\% function_arguments
\(\cos (1.5707963)=0.0000000\)
\(\cos (3.1415925)=-1.0000000\)
Enter an angle in radians:
-3. 1415925
\(\cos (-3.1415925)=-1.0000000\)
fabs (cos (-3.1415925)) \(=1.0000000\)
\(\cos (f a b s(-3.1415925))=-1.0000000\)
fabs (cos (2.0 * -3.1415925)) \(=1.0000000\)
fabs (2.0 * \(\cos (-3.1415925))=2.0000000\)
fabs (2.0* \(\cos (1.0 / 5.0 *-3.1415925))=1.6180340\)

\section*{Using the C Standard Math Library}

If you're going to use functions like cos that are from the part of the C standard library that has to do with math, then you need to do two things:
1. In your source code, immediately below the \#include <stdio.h> you MUST also have \#include <math.h>
2. When you compile, you must append \(-1 m\) to the end of your compile command: gec -o function_arguments function_arguments.c -lm (Note that this is hyphen small-L small-M, NOT hyphen one small-M.)
NOTE: - lm means "link to the C standard math library."
CS1313: Standard Library Functions Lesson
CS1313 Spring 2024

\section*{Function Call in Assignment}

Function calls are used in expressions in exactly the same ways that variables and constants are used.
For example, a function call can be used on the right side of an assignment or initialization:
```

float theta = 3.1415926 / 4.0;
float cos_theta;
cos_theta = cos(theta);
length_of_c_for_any_triangle =
sqrt(a * a + b * b -
2 * a * b * cos(theta));

```

CS1313: Standard Library Functions Lesson

\section*{Function Call in printf}

A function call can also be used in an expression in a printf statement:
\[
\begin{aligned}
& \text { printf("\%f\n", 2.0); } \\
& \text { printf("\%f\n", pow(cos(theta), 2.0)); }
\end{aligned}
\]

In CS1313, this usage is ABSOLUTELY FORBIDDEN, because all calculations should get done in the calculation subsection, NOT in the output subsection.
But the C programming language does permit this usage.

\section*{Function Call as Argument}

Since any expression can be used as some function's argument, a function call can also be used as an argument to another function:
```

const float pi = 3.1415926;
float complicated_expression;
complicated_expression =
$1.0+\cos (\operatorname{asin}(\operatorname{sqr} t(2.0) / 2.0)+p i)) ;$

```

\section*{Function Call in Initialization}

Most function calls can be used in initialization, as long as its arguments are literal constants:
float cos_theta \(=\cos (3.1415926)\);
This is true both in variable initialization and in named constant initialization:
const float cos_pi = cos(3.1415926);

\section*{Function Use Example Part 1}
```

 #include <stdio.h>
 #include <math.h>
 int main ()
 { /* main */
 const float pi = 3.1415926;
 const float cos_pi = cos(3.1415926);
 const float sin_pi = sin(pi);
 const int program_success_code = 0;
 float phi = 3.1415926 / 4.0;
 float cos_phi = cos(phi);
 float theta, sin_theta;
    ```

\section*{Function Use Example Part 2}
```

theta = 3.0 * pi / 4;
sin_theta = sin(theta);
printf("2.0 = %f\n", 2.0);
printf("pi = %f\n", pi);
printf("theta = %f\n", theta);
printf("cos(pi) = %f\n", cos(pi));
printf("cos_pi = %f\n", cos_pi);
printf("sin(pi) = %f\n", sin(pi));
printf("sin_pi = %f\n", sin_pi);
printf("sin(theta) = %f\n", sin(theta));
printf("sin_theta = %f\n", sin_theta);
printf("sin(theta)^(1.0/3.0) = %f\n",
pow(sin(theta), (1.0/3.0)));

```

\section*{Function Use Example Part 3}
```

 printf("1 + sin(acos(1.0)) = %f\n",
 1+ sin(acos(1.0)));
 printf("sin(acos(1.0)) = %f\n",
 sin(acos(1.0)));
 printf("sqrt(2.0) = %f\n", sqrt(2.0));
 printf("sqrt(2.0) / 2 = %f\n", sqrt(2.0) / 2);
 printf("acos(sqrt(2.0)/2.0) = %f\n",
 acos(sqrt(2.0)/2.0));
 printf("sin(acos(sqrt(2.0)/2.0)) = %f\n",
sin(acos(sqrt(2.0)/2.0)));
return program_success_code;
} /* main */

```

\section*{Function Use Example Part 4}
```

gcc -o function use function_use.c -lm
function use
$2.0=2.00 \overline{0} 000$
pi = 3.141593
theta $=2.356194$
$\cos ($ pi $)=-1.000000$
cos_pi $=-1.000000$
$\sin (p i)=0.000000$
sin_pi $=0.000000$
sin(theta) $=0.707107$
\sin theta $=0.707107$
$\sin ($ theta)^(1.0/3.0) $=0.890899$
$1+\sin (\operatorname{acos}(1.0))=1.000000$
$\sin (\operatorname{acos}(1.0))=0.000000$
sqrt(2.0) $=1.414214$
sqrt(2.0) / $2=0.707107$
$\operatorname{acos}(\operatorname{sqrt}(2.0) / 2.0)=0.785398$
$\sin (\operatorname{acos}(\operatorname{sqrt}(2.0) / 2.0))=0.707107$

```

\section*{Evaluation of Functions in Expressions}

When a function call appears in an expression - for example, on the right hand side of an assignment statement the function is evaluated just before its value is needed, in accordance with the rules of precedence order.

\section*{Evaluation Example \#1}

For example, suppose that \(x\) and \(y\) are float variables, and that \(y\) has already been assigned the value -10.0 .
Consider this assignment statement:
\[
\mathrm{x}=1+2.0 * 8.0+\mathrm{fabs}(\mathrm{y}) / 4.0 ;
\]

\section*{Evaluation Example \#2}
\[
\begin{aligned}
& x=1+2.0 * 8.0+\text { fabs (y) / 4.0; } \\
& x=1+16.0+\text { fabs }(y) / 4.0 \text {; } \\
& \mathrm{x}=1+16.0+\mathrm{fabs}(-10.0) / 4.0 \text {; } \\
& x=1+16.0+10.0 \text { / 4.0; } \\
& x=1+16.0+2.5 \text {; } \\
& x=1.0+16.0+2.5 \text {; } \\
& \mathrm{x}=17.0 \quad+\quad 2.5 \text {; } \\
& \mathrm{x}=\quad 19.5 \text {; }
\end{aligned}
\]

\section*{Exercise: Calculating Roots}

Write a program that finds the \(N^{\text {th }}\) root of some real value, using the pow function from the C Standard Math Library:
- greet the user;
- prompt for and input the base value;
- prompt for and input which root to calculate;
- calculate that root of that value;
- output that root of that value.

You don't need to idiotproof nor to have comments.
Otherwise, all programming project rules apply, through PP\#5.

CS1313: Standard Library Functions Lesson
CS1313 Spring 2024```

