
1
Standard I/O Lesson

CS1313 Spring 2025

13. Placeholder & Variable in Same
Statement

14. Placeholder/Variable Same
Statement: Example

15. Input via scanf
16. Input via scanf: Ampersand

Before Variable
17. Input via scanf Example
18. Input via scanf Example’s

Flowchart
19. Reading Multiple Variables with a

Single scanf
20. Multiple Variables per scanf

Example #1
21. Multiple Variables per scanf

Example #2
22. printf vs scanf
23. Programming Exercise

1. Standard I/O Lesson Outline
2. Standard Input & Standard

Output
3. Character String Literal Constant
4. String Literal Cannot Use

Multiple Lines
5. Multi-line String Literal Example
6. Output via printf
7. Newline
8. Newline Example
9. White Space
10. Placeholders (Format Specifiers)
11. Placeholders for Various Data

Types
12. Mixing Literal Text and

Variables’ Values #1
13. Mixing Literal Text and

Variables’ Values #2

Standard I/O Lesson Outline

2
Standard I/O Lesson

CS1313 Spring 2025

 Standard input is a user typing at the keyboard. It is
sometimes shortened to stdin, pronounced “standard in.”

 Standard output is the computer outputting to
the terminal screen. It is sometimes shortened to stdout,
pronounced “standard out.”

In C:
 a scanf statement always inputs from stdin, and
 a printf statement always outputs to stdout.

Standard Input & Standard Output

3
Standard I/O Lesson

CS1313 Spring 2025

A character string literal constant is a sequence of characters
delimited by a double quote at the beginning and
a double quote at the end.

A character string literal constant is also known as a
character string literal or a string literal for short.

For example, in this printf statement:
 printf("This is a printf statement.\n");

the following is a string literal:
 "This is a printf statement.\n"

The output of this printf statement is:
 This is a printf statement.

followed by a newline, also known as a carriage return.

Character String Literal Constant

4
Standard I/O Lesson

CS1313 Spring 2025

In a C source code, a character string literal constant can
only use one single line; that is, both of its delimiters
MUST be on the same line of source code text.

So, each of these is CORRECT:
printf("This string literal takes one line");

printf(" and so does this string literal.\n");

And this is WRONG WRONG WRONG:
printf("This string literal takes

 more than one line so it's WRONG!\n");

Some compilers will refuse to compile the wrong version;
others will accept the wrong version but give a warning.

Regardless, if this appears in a program in CS1313,
YOU WILL BE SEVERELY PENALIZED!

String Literal Cannot Use Multiple Lines

5
Standard I/O Lesson

CS1313 Spring 2025

% cat bad_string_literal.c
#include <stdio.h>

int main ()
{ /* main */
 printf("This string literal takes
 more than one line so it's WRONG!\n");
} /* main */
% gcc -o bad_string_literal bad_string_literal.c
bad_string_literal.c: In function ‘main’:
bad_string_literal.c:5: error: missing terminating " character
bad_string_literal.c:6: error: ‘more’ undeclared (first use in this function)
bad_string_literal.c:6: error: (Each undeclared identifier is reported only once
bad_string_literal.c:6: error: for each function it appears in.)
bad_string_literal.c:6: error: expected ‘)’ before ‘than’
bad_string_literal.c:6: error: missing terminating ' character
bad_string_literal.c:7: error: expected ‘;’ before ‘}’ token

Multi-line String Literal Example

6
Standard I/O Lesson

CS1313 Spring 2025

In C, we output to standard output using a printf statement:
 printf("This will be output to stdout.\n");

A printf statement can output a string literal.
A printf statement can also output the value of a variable,

or of a literal constant, or of a named constant:
 printf("%d", number_of_students);
The statement above outputs to stdout (the terminal screen)

the value of a variable named number_of_students
of type int (presumably declared previously in
the program that contains this printf statement).

The string literal in a printf statement is known as a
format string.

Output via printf

In C, you can place a newline inside of a string literal using:
\n

If a newline appears inside a string literal in the source code,
then when the string literal is output at runtime,
the newline causes the output to move to the start of the next line
of output text.

7
Standard I/O Lesson

CS1313 Spring 2025

https://i.pinimg.com/originals/29/8f/3e/298f3eacdb07bf9f2223645236ef47e1.gif

Newline

https://www.youtube.com/
watch?v=4etk_viTUg4

https://i.pinimg.com/originals/29/8f/3e/298f3eacdb07bf9f2223645236ef47e1.gif
https://www.youtube.com/watch?v=4etk_viTUg4
https://www.youtube.com/watch?v=4etk_viTUg4

8
Standard I/O Lesson

CS1313 Spring 2025

% cat newline.c
#include <stdio.h>

int main ()
{ /* main */
 printf("Howdy do!\n");
 printf("This string literal contains a newline in the\nmiddle ");
 printf("but this string literal contains a newline at the end.\n");
 printf("So there!\n");
} /* main */
% gcc -o newline newline.c
% newline
Howdy do!
This string literal contains a newline in the
middle but this string literal contains a newline at the end.
So there!

Note: In general, it’s better programming practice to
put newlines only at the end of your string literals,
not in the middle, because in the middle they can be
difficult for programmers (for example, graders) to see.

Newline Example

White Space
White space is the general term for all of:
 blank spaces;
 tabs;
 carriage returns.
The term comes from the parts of standard typing paper that
don’t have any ink on them.

Standard I/O Lesson
CS1313 Spring 2025 9

10
Standard I/O Lesson

CS1313 Spring 2025

printf("%d", number_of_students);

The statement above:
 outputs to standard output (stdout)
 the value of the variable named number_of_students
 which is of type int
 (declared previously in the program that contains this
printf statement).

The %d is known as a placeholder:
it holds the place of the value of the variable
that we actually want to output.

The formal name for a placeholder is a format specifier,
but we’ll typically say placeholder in CS1313.

Placeholders (Format Specifiers)

11
Standard I/O Lesson

CS1313 Spring 2025

 int: %d
 printf("%d", number_of_students);

 float: %f
 printf("%f", pi);

 char: %c
 printf("%c", middle_initial);

For a more complete list of placeholders (format specifiers):

https://tutorialsbookmarks.com/format-specifiers-in-c/

Placeholders for Various Data Types

https://tutorialsbookmarks.com/format-specifiers-in-c/

12
Standard I/O Lesson

CS1313 Spring 2025

We now know that we can output a string literal:
 printf("This will be output to stdout.\n");

We also know that we can output the value of a variable:
 printf("%d", number_of_students);

Not surprisingly, we can mix and match the two:
 printf(" on your %d income.\n", tax_year);

We can even mix and match while outputting
the values of multiple variables of various data types:

 printf("The %d federal income tax on $%f\n",
 tax_year, income);

Mixing Literal Text and Variables’ Values #1

13
Standard I/O Lesson

CS1313 Spring 2025

In a printf statement’s format string,
we can mix and match literal text and variables’ values while
outputting the values of multiple variables of various data types:

 printf("The %d federal income tax on $%f\n",
 tax_year, income);

This statement means:
 Output to stdout (the terminal screen)
 the literal text "The ", and then
 the value of the int variable named tax_year, and then
 the literal text " federal income tax on $", and then
 the value of the float variable named income, and then
 a newline.

Mixing Literal Text and Variables’ Values #2

14
Standard I/O Lesson

CS1313 Spring 2025

When you use a placeholder inside the string literal of
a printf statement, the variable whose place is
being held by the placeholder MUST MUST MUST be
in the same printf statement as the placeholder.

Putting the placeholder in one printf statement and the
variable in a different printf statement is BAD BAD BAD!

 /* These printfs are GOOD GOOD GOOD! */
 printf("f1=%f, ", f1);
 printf("i1=%d, GOOD!\n", i1);
 /* These printfs are BAD BAD BAD! */
 printf("BAD! f2=%f, i2=%d, ");
 printf("BAD!\n", f2, i2);

NOTE: The same rule applies to scanf statements (coming up).

Placeholder & Variable in Same Statement

15
Standard I/O Lesson

CS1313 Spring 2025

% cat placeholder.c
#include <stdio.h>

int main ()
{ /* main */
 float f1, f2;
 int i1, i2;

 f1 = 3.75;
 f2 = 5.25;
 i1 = 6;
 i2 = 8;
 /* These printfs are GOOD GOOD GOOD! */
 printf("f1=%f, ", f1);
 printf("i1=%d, GOOD!\n", i1);
 /* These printfs are BAD BAD BAD! */
 printf("BAD! f2=%f, i2=%d, ");
 printf("BAD!\n", f2, i2);
 /* This printf is GOOD GOOD GOOD! */
 printf("f2=%f, i2=%d, GOOD!\n", f2, i2);
} /* main */
% gcc -o placeholder placeholder.c
% placeholder
f1=3.750000, i1=6, GOOD!
BAD! f2=3.750000, i2=134513662, BAD!
f2=5.250000, i2=8, GOOD!

Placeholder/Variable Same Statement: Example

16
Standard I/O Lesson

CS1313 Spring 2025

A printf statement
outputs to stdout (the terminal screen).

Similarly, a scanf statement
inputs from stdin (a user typing at the keyboard).

The scanf statement has a somewhat strange syntax:
scanf("%d", &height_in_cm);

This statement says:
 input from stdin (a user typing at the keyboard)
 an int value
 and place that int value into the memory location

associated with the int variable named
height_in_cm.

Input via scanf

NOTICE!

17
Standard I/O Lesson

CS1313 Spring 2025

The scanf statement has a somewhat strange syntax:
scanf("%d", &height_in_cm);

Notice the ampersand & before the name of the variable that
you’re inputting into.

For now, you must simply ACCEPT THIS ON FAITH.
Time permitting, toward the end of the semester

we’ll learn about what the ampersand means.

Input via scanf: Ampersand Before Variable

NOTICE!

18
Standard I/O Lesson

CS1313 Spring 2025

% cat read_variable.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 printf("What's my height in centimeters?\n");
 scanf("%d", &height_in_cm);
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o read_variable read_variable.c
% read_variable
What's my height in centimeters?
160
My height is 160 cm.

Input via scanf Example

19
Standard I/O Lesson

CS1313 Spring 2025

Start

End

Prompt for height in cm.

Input height in cm.

Output height in cm.

printf("What's my height in centimeters?\n");
 scanf("%d", &height_in_cm);
 printf("My height is %d cm.\n", height_in_cm);

Input via scanf Example’s Flowchart

20
Standard I/O Lesson

CS1313 Spring 2025

C allows inputting multiple variables per scanf statement.
At runtime, when the user types in the input values,

they can separate the individual input values
 by blank spaces, and/or
 by tabs, and/or
 by carriage returns (newlines).
Recall that blank spaces, tabs and carriage returns, as a group,

are known as white space – think of it as morally equivalent
to the un-inked space on a piece of typing (or printing) paper.

Reading Multiple Variables with a Single scanf

21
Standard I/O Lesson

CS1313 Spring 2025

#include <stdio.h>

int måin ()
{ /* main */
 float CS1313_averagě_height_in_m;
 int number_of_silly_people, number_of_nonsilly_people;
 char Henrys_middle_initial;

 printf("I'm going to guess the answers to questions\n");
 printf(" I've already asked!\n");
 printf("In CS1313, how many silly people are there,\n");
 printf(" and how many non-silly people are there?\n");
 scanf("%d %d", NO YOU DON’T GET TO COPY-AND-PASTE!
 &number_of_silly_people,
 &number_of_nonsilly_people);
 printf("What is the average height in m in CS1313,\n");
 printf(" and what is Henry's middle initial?\n");
 scanf("%f %c", YOU AREN’T ALLOWED TO DO COPY-AND-PASTE!
 &CS1313_average_height_in_m, &Henrys_middle_initial);
 printf("In CS1313, there are %d silly people\n",
 number_of_silly_people); NO COPY-AND-PASTE!
 printf(" and %d non-silly people.\n",
 number_of_nonsilly_people); NO COPY-AND-PASTE!
 príntf("In CS1313, the average height is %f m.\n",
 CS1313_average_height_in_m); NO COPY-AND-PASTE!
 printf("Henry's middle initial is %c.\n",
 Henrys_míddle_initial); NO COPY-AND-PASTE!
} /* main */

Multiple Variables per scanf Example #1

22
Standard I/O Lesson

CS1313 Spring 2025

% gcc -o read_list read_list.c
% read_list
I'm going to guess the answers to questions
 I've already asked!
In CS1313, how many silly people are there,
 and how many non-silly people are there?
20 120
What is the average height in m in CS1313,
 and what is Henry's middle initial?
1.75
J
In CS1313, there are 20 silly people
 and 120 non-silly people.
In CS1313, the average height is 1.750000 m.
Henry's middle initial is J.

Multiple Variables per scanf Example #2

23
Standard I/O Lesson

CS1313 Spring 2025

 printf
 outputs
 to stdout
 the string literal CAN (and typically does) contain literal text as well

as placeholders
 the string literal typically DOES end with a newline (but that’s

NOT required)
 variable names after the string literal CANNOT be preceded by &

 scanf
 inputs
 from stdin
 the string literal CANNOT contain literal text –

EXCEPT, if there are multiple placeholders, then
between each adjacent pair of placeholders there MUST be a
SINGLE BLANK SPACE (REQUIRED)

 the string literal CANNOT contain a newline
 variable names after the string literal MUST be preceded by &

printf vs scanf

24
Standard I/O Lesson

CS1313 Spring 2025

Create a program that:
1. Greets the user.
2. Prompts the user for their age in years.
3. Inputs the user’s age in years.
4. Outputs the user’s age in years.
Begin by drawing a flowchart, and then write the program.

The program does not have to have comments.
The data type for the age variable must be appropriate.

Programming Exercise

	Standard I/O Lesson Outline
	Standard Input & Standard Output
	Character String Literal Constant
	String Literal Cannot Use Multiple Lines
	Multi-line String Literal Example
	Output via printf
	Newline
	Newline Example
	White Space
	Placeholders (Format Specifiers)
	Placeholders for Various Data Types
	Mixing Literal Text and Variables’ Values #1
	Mixing Literal Text and Variables’ Values #2
	Placeholder & Variable in Same Statement
	Placeholder/Variable Same Statement: Example
	Input via scanf
	Input via scanf: Ampersand Before Variable
	Input via scanf Example
	Input via scanf Example’s Flowchart
	Reading Multiple Variables with a Single scanf
	Multiple Variables per scanf Example #1
	Multiple Variables per scanf Example #2
	printf vs scanf
	Programming Exercise

