
1
Software Lesson #2

CS1313 Spring 2025

21. Our Old Friend hello_world.c
22. Compiler Details
23. Compiler Details (cont’d)
24. Elements of a Compiler #1
25. Elements of a Compiler #2
26. Phases of Compiling
27. Compiling a C Statement
28. Assembly Code for hello_world.c #1
29. Assembly Code for hello_world.c #2
30. Machine Code for hello_world.c
31. How to Program in Machine Language Directly
32. Why Not Do Everything in Machine Language?
33. Why Not Do Everything in Assembly Language?
34. The Programming Process
35. What is an Algorithm?
36. Algorithms
37. Algorithm Example: Eating a Bowl of Corn Flakes
38. Top-Down Design
39. Eating Cornflakes: Top Level

1. Software Lesson 2 Outline
2. Languages
3. Ingredients of a Language
4. Kinds of Languages
5. Natural Languages: How Many?
6. Natural Languages Don’t Have to Arise

Naturally
7. Natural Languages Can Be Flexible
8. Natural Languages Can Be Mixed Together
9. Natural Languages Can Be Ambiguous
10. Natural Languages Can Be Flexible About

Correctness
11. Programming Languages
12. Natural Languages vs Programming

Languages
13. Programming Language Hierarchy
14. High Level Languages
15. Assembly Languages
16. Machine Languages
17. Converting Between Languages
18. Compiler
19. Interpreter
20. Assembler

Software Lesson 2 Outline

2
Software Lesson #2

CS1313 Spring 2025

 What is a language?
 Kinds of languages

 Natural languages
 Programming languages (also known as Formal languages)

 Converting between programming languages
 Compilers
 Interpreters
 Assemblers

Languages

3
Software Lesson #2

CS1313 Spring 2025

 Symbols: a set of words and punctuation (in computing,
words and punctuation are collectively known as tokens)

 Grammar (also known as syntax): a set of rules for
putting symbols together to get valid statements

 Semantics: a set of rules for interpreting
the meaning of a grammatically valid statement

Ingredients of a Language

4
Software Lesson #2

CS1313 Spring 2025

 Natural languages: used in human communication
 Programming languages (also known as formal languages):

used by computers (among others)

Kinds of Languages

 There are said to be 7000+ natural languages in the world:
https://www.ethnologue.com/guides/how-many-languages

 Examples: English, Chinese, Swahili, Navajo, Quechua, Maori

5
Software Lesson #2

CS1313 Spring 2025

Natural Languages: How Many?

https://www.reddit.com/r/dataisbeautiful/comme
nts/t5oitk/most_spoken_languages_in_the_world

_oc/?rdt=36221

https://www.ethnologue.com/guides/how-many-languages
https://www.reddit.com/r/dataisbeautiful/comments/t5oitk/most_spoken_languages_in_the_world_oc/?rdt=36221
https://www.reddit.com/r/dataisbeautiful/comments/t5oitk/most_spoken_languages_in_the_world_oc/?rdt=36221
https://www.reddit.com/r/dataisbeautiful/comments/t5oitk/most_spoken_languages_in_the_world_oc/?rdt=36221

Not all natural languages arise naturally –
some are created by people, on purpose.

6
Software Lesson #2

CS1313 Spring 2025

https://en.wikipedia.org/wiki/Incubus_(1966_film)

https://en.wikipedia.org/wiki/Worf

https://en.wikipedia.org/wiki/Legolas

https://en.wikipedia.org/wiki/Jabba_the_Hutt

Natural Languages Don’t Have to Arise Naturally

https://en.wikipedia.org/wiki/Incubus_(1966_film)
https://en.wikipedia.org/wiki/Worf
https://en.wikipedia.org/wiki/Legolas
https://en.wikipedia.org/wiki/Jabba_the_Hutt

Natural languages typically can be described by formal rules
(grammar), but often aren’t rigidly governed by these rules
in everyday use:
 “Any noun can be verbed.”
 “I might could get me one o’ them there computers.”

7
Software Lesson #2

CS1313 Spring 2025

Natural Languages Can Be Flexible

8
Software Lesson #2

CS1313 Spring 2025

https://www.indiewire.com/gallery/the-20-most-iconic-characters-in-studio-ghibli-history/big-totoro/

https://en.wikipedia.org/wiki/Parcheesi

Natural languages CAN mix words from different languages –
and even syntax (elements of grammar) from different languages
– in a single sentence:
 “Hey, amigo, is it all right by you if I kibbitz

your pachisi game while we watch your anime?”

Natural Languages Can Be Mixed Together

https://www.indiewire.com/gallery/the-20-most-iconic-characters-in-studio-ghibli-history/big-totoro/
https://en.wikipedia.org/wiki/Parcheesi

9
Software Lesson #2

CS1313 Spring 2025

https://www.onesnladay.com/wp-
content/uploads/2019/02/11-17-
1984_0.53.55.00-300x225.jpg

Natural languages CAN be ambiguous:
 “When did he say she was going?”
 could be interpreted as:

 State the time at which he said the words “She was going.”
OR
 According to him, at what time was she going?

 “You can’t put too much water in a nuclear reactor.”
could be interpreted as:
 You shouldn’t put a lot of water in a nuclear reactor.
OR
 There’s no upper limit to how much water

you can put in a nuclear reactor.

Natural Languages Can Be Ambiguous

https://www.onesnladay.com/wp-content/uploads/2019/02/11-17-1984_0.53.55.00-300x225.jpg
https://www.onesnladay.com/wp-content/uploads/2019/02/11-17-1984_0.53.55.00-300x225.jpg
https://www.onesnladay.com/wp-content/uploads/2019/02/11-17-1984_0.53.55.00-300x225.jpg

10
Software Lesson #2

CS1313 Spring 2025

Natural languages can have plenty of flexibility regarding
“correctness;” for example, “ain’t,” split infinitives,
ending a sentence with a preposition.

 “That is something up with which I will not put.”

Natural Languages Can Be Flexible About Correctness

11
Software Lesson #2

CS1313 Spring 2025

 Examples: C, Java, HTML, Haskell, SAS
 Also known as formal languages
 Completely described and rigidly governed by formal rules
 Cannot mix the words of multiple languages,

or the syntax of multiple languages, in the same program
 Cannot be ambiguous
 Words and syntax must be EXACTLY correct in every way

Programming Languages

12
Software Lesson #2

CS1313 Spring 2025

PROPERTY NAT’L PROG
Completely described and rigidly governed
by formal rules

no YES

CAN mix the words of multiple languages,
or the syntax of multiple languages,
in the same program

YES no

CAN be ambiguous YES no

Words and syntax must be
EXACTLY correct in every way

no YES

Natural Languages vs Programming Languages

13
Software Lesson #2

CS1313 Spring 2025

 High Level Languages
 Assembly Languages
 Machine Languages

Programming Language Hierarchy

14
Software Lesson #2

CS1313 Spring 2025

 Human-readable
 Most are standardized, so they can be used on

just about any kind of computer.
 Examples: C, Fortran 90, Java, HTML, Haskell, SAS
 Typically, they are designed for a particular kind of application;

for example:
 C for operating system design
 Fortran 90 for scientific & engineering applications
 Java for embedded systems (originally designed for interactive TV)
 HTML for hypertext (webpages)
 SAS for statistics

But often, their uses in real life are broader their original purpose.

High Level Languages

15
Software Lesson #2

CS1313 Spring 2025

 Human-readable
 Specific to a particular CPU family; for example:

 Intel/AMD x86 (PCs, servers, some handhelds)
 ARM (handhelds such as smartphones and tablets)
 IBM POWER (server computers)

 So, for example, a program in x86 assembly language
cannot be directly run on a machine with an ARM CPU.

 Set of simple commands; for example:
 Load a value from a location in main memory
 Add two numbers
 Branch to an instruction out of sequence

Assembly Languages

16
Software Lesson #2

CS1313 Spring 2025

 Not human-readable, except with immense effort
 Binary code that the CPU family understands directly
 Binary representation of the CPU family’s assembly language

Machine Languages

17
Software Lesson #2

CS1313 Spring 2025

Compilers, interpreters and assemblers are
programs that convert human-readable source code
into machine-readable executable code.

Converting Between Languages

18
Software Lesson #2

CS1313 Spring 2025

 Converts a human-readable high level language source code
of a program into a machine language executable program

 Converts an entire source code all at once
 Must be done before executing the program
 Example compiled languages: Fortran, C, C++, Pascal

Compiler

19
Software Lesson #2

CS1313 Spring 2025

 Converts a human-readable high level language source code
into actions that are immediately performed

 Converts and executes one statement at a time
 Conversion and execution alternate
 Example interpreted languages: Perl, HTML, SAS,

Mathematica, Unix “shell” (interactive system within Unix)

Interpreter

20
Software Lesson #2

CS1313 Spring 2025

 Converts a human-readable CPU-specific assembly code
into CPU-specific, non-human-readable machine language

 Like a compiler, but for a low level assembly language
instead of for a high level language

Assembler

21
Software Lesson #2

CS1313 Spring 2025

% cat hello_world.c
/*

 *** Program: hello_world ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012 Fridays 1:00pm ***
 *** Description: Prints the sentence ***
 *** "Hello, world!" to standard output. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*

 *** Execution Section (body) ***

 *
 * Print the sentence to standard output
 * (i.e., to the terminal screen).
 */
 printf("Hello, world!\n");
} /* main */
% gcc -o hello_world hello_world.c
% hello_world
Hello, world!

Our Old Friend hello_world.c

22
Software Lesson #2

CS1313 Spring 2025

Compiler Details

23
Software Lesson #2

CS1313 Spring 2025

Compiler Details (cont’d)

24
Software Lesson #2

CS1313 Spring 2025

 Lexical Analyzer: identifies a program’s “word” elements:
 Keywords (for example, int, while)

 These are built into the programming language and
cannot be changed by programmers.

 Literal constants (for example, 5, 0.725,
"Hello, world!", delimited by double quotes on both ends)

 User-defined identifiers (for example, addend)
 Operators; for example:

 Arithmetic: + - * / %
 Relational: == != < <= > >=
 Logical: && || !

These will be explained soon.

Elements of a Compiler #1

25
Software Lesson #2

CS1313 Spring 2025

 Parser: determines the program’s grammar
 Semantic Analyzer: determines what the program does
 Intermediate Code Generator: expresses, as an

assembly-like program, what the program does
 Optimizer: makes code more efficient (faster)
 Assembly Code Generator: produces the final assembly code

that represents what the program does

Elements of a Compiler #2

26
Software Lesson #2

CS1313 Spring 2025

 Compiler
 Assembler: turns assembly code into machine code
 Linker/loader: turns machine code into an executable file

Both the assembler and the linker/loader are
invoked automatically by the compiler,
so you don’t have to worry about them.

Phases of Compiling

27
Software Lesson #2

CS1313 Spring 2025

Compiling a C Statement

On Pentium4 Using gcc

pushl %ebp
movl %esp, %ebp
subl $8, %esp
subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp
leave
ret

28
Software Lesson #2

CS1313 Spring 2025

Different opcodes
(assembly language

instructions)

On IBM POWER4 Using gcc

mflr 0
stw 31,-4(1)
stw 0,8(1)
stwu 1,-64(1)
mr 31,1
lwz 3,LC..1(2)
bl .printf
nop
lwz 1,0(1)
lwz 0,8(1)
mtlr 0
lwz 31,-4(1)
blr

Assembly Code for hello_world.c #1

On Pentium4 Using gcc
(GNU compiler)

pushl %ebp
movl %esp, %ebp
subl $8, %esp
subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp
leave
ret

29
Software Lesson #2

CS1313 Spring 2025

Different sequences of
instructions

(using the same
opcodes)

On Pentium4 Using icc
(Intel compiler)

pushl %ebp
movl %esp, %ebp
subl $3, %esp
andl $-8, %esp
addl $4, %esp
push $__STRING.0
call printf
xorl %eax, %eax
popl %ecx
movl %ebp, %esp
popl %ebp
ret

Assembly Code for hello_world.c #2

30
Software Lesson #2

CS1313 Spring 2025

10111101010100010101011110101001

10111010101000010101101011101000

01110101010000101011010111010001

01010100101010101101010101011010

...

Machine Code for hello_world.c

31
Software Lesson #2

CS1313 Spring 2025

1. Write the assembly code for the program directly by hand
on paper (that is, not in a high level language).

2. For each assembly language instruction, look up the bit pattern
of the associated machine code.

3. On the computer console, flip switches to match the bit pattern
of the machine code.

4. Press the “Run” button.

On modern computers, programming directly in machine language
is just about impossible.

How to Program in Machine Language Directly

32
Software Lesson #2

CS1313 Spring 2025

Fun and easy!
Not nearly as tedious or error-prone!

Incredibly tedious and ridiculously error-prone!

Why Not Do Everything in Machine Language?

33
Software Lesson #2

CS1313 Spring 2025

Can’t be run on any other kind of computer.
May be completely obsolete in a few years.

Why Not Do Everything in Assembly Language?

34
Software Lesson #2

CS1313 Spring 2025

Run

CompileFormulate
Problem

Construct Algorithm

Choose Programming
Language

Write Program

Debug

Get an A/Impress Your Boss/Sell for Zillions!

Bugs?

Bugs?

No

Yes

No

Yes

The Programming Process

35
Software Lesson #2

CS1313 Spring 2025

An algorithm is:
 a step-by-step method
 that is written in a natural language (for example, English)

or in pseudocode (something that sort of looks like
a programming language but isn’t as precise),
instead of in a programming language,

 that solves a well-defined (though not necessarily useful)
problem,

 on a well-defined set of inputs (which may be empty),
 using finite resources (for example,

computing time and storage),
 and that produces a well-defined set of outputs

(which may be empty).

What is an Algorithm?

36
Software Lesson #2

CS1313 Spring 2025

An algorithm is a language-independent way of expressing
the method of solving a problem; that is, an algorithm could
be expressed in two different languages (for example,
English and Japanese) and still be the same algorithm.

A program, by contrast, is a language-dependent
implementation of the method of solving a problem;
that is, the same set of steps expressed in
two different programming languages would be
two different programs, even if the two programs
accomplished exactly the same result.

Many programs, but not all, implement algorithms.
Programs that don’t implement algorithms often implement

heuristics, which typically are inexact but good enough.
The word “algorithm” comes from the name of the 9th century

mathematician, Muhammad ibn Musa al-Khwarizmi.
https://en.wikipedia.org/wiki/Algorithm

Algorithms

https://en.wikipedia.org/wiki/Algorithm

37
Software Lesson #2

CS1313 Spring 2025

 Repeat until bowl is empty of
corn flakes
 Using spoon, pick up corn

flakes and milk from bowl
 Put spoon with corn flakes

and milk into mouth
 Pull spoon from mouth,

leaving corn flakes and milk
 Repeat ...

 Chew
 ... until mouthful is mush
 Swallow

 Leave mess for housemates to
clean up

 Get bowl from cupboard
 Get spoon from drawer
 Get box of corn flakes from

pantry
 Get jug of milk from

refrigerator
 Place bowl, spoon, corn

flakes and milk on table
 Open box of corn flakes
 Pour corn flakes from box

into bowl
 Open jug of milk
 Pour milk from jug into bowl
 Close jug of milk
 Go to table
 Pick up spoon

Algorithm Example: Eating a Bowl of Corn Flakes

38
Software Lesson #2

CS1313 Spring 2025

Algorithms for most non-trivial problems tend to be fairly
complicated.

As a result, it may be difficult to march from an algorithm’s
beginning to its end in a straight line, because there may be
too many details to keep in your head all at one time.

Instead, you can use a technique called top-down design:
start with the whole problem, then break it into a few pieces,
then break each of those pieces into a few pieces, then break
each of those pieces into a few pieces, and so on, until each
piece is pretty small.

Top-Down Design

39
Software Lesson #2

CS1313 Spring 2025

 Get stuff
 Transport stuff
 Set up stuff
 Eat
 Finish

Eating Cornflakes: Top Level

	Software Lesson 2 Outline
	Languages
	Ingredients of a Language
	Kinds of Languages
	Natural Languages: How Many?
	Natural Languages Don’t Have to Arise Naturally
	Natural Languages Can Be Flexible
	Natural Languages Can Be Mixed Together
	Natural Languages Can Be Ambiguous
	Natural Languages Can Be Flexible About Correctness
	Programming Languages
	Natural Languages vs Programming Languages
	Programming Language Hierarchy
	High Level Languages
	Assembly Languages
	Machine Languages
	Converting Between Languages
	Compiler
	Interpreter
	Assembler
	Our Old Friend hello_world.c
	Compiler Details
	Compiler Details (cont’d)
	Elements of a Compiler #1
	Elements of a Compiler #2
	Phases of Compiling
	Compiling a C Statement
	Assembly Code for hello_world.c #1
	Assembly Code for hello_world.c #2
	Machine Code for hello_world.c
	How to Program in Machine Language Directly
	Why Not Do Everything in Machine Language?
	Why Not Do Everything in Assembly Language?
	The Programming Process
	What is an Algorithm?
	Algorithms
	Algorithm Example: Eating a Bowl of Corn Flakes
	Top-Down Design
	Eating Cornflakes: Top Level

