
Search Lesson
CS1313 Spring 2024 1

Search Lesson Outline
1. Searching Lesson Outline
2. How to Find a Value in an Array?
3. Linear Search
4. Linear Search Code
5. Linear Search Example #1
6. Linear Search Example #2
7. Linear Search Example #3
8. Linear Search Example #4
9. Linear Search Example #5
10. Linear Search Example #6
11. How Long Does Linear Search Take?
12. Linear Search: Best Case
13. Linear Search: Worst Case
14. Linear Search: Average Case
15. Why Do We Care About Search Time?

16. “Big-O” Notation #1
17. “Big-O” Notation #2
18. “Big-O” Notation #4
19. “Big-O” Notation #5
20. “Big-O” Notation #6
21. Linear Search Code, Again
22. Linear Search is O(n) in the Average Case
23. A Better Search?
24. Faster Search Requires Sorted Data
25. Binary Search
26. Binary Search Code
27. Binary Search Code
28. Binary Search Example #1
29. Binary Search Example #2
30. Binary Search Example #3
31. Time Complexity of Binary Search #1
32. Time Complexity of Binary Search #2
33. Time Complexity of Binary Search #3
34. Need to Sort Array

Search Lesson
CS1313 Spring 2024 2

How to Find a Value in an Array?

Suppose you have a big array full of data, and
you want to find a particular value.

How will you find that value?

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 3

Linear Search

Linear search means looking at each element of the array,
in turn, until you find the target value.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 4

Linear Search Code

int linear_search (float* array,
 int number_of_elements,
 float target_value)
{ /* linear_search */
 const int first_element = 0;
 const int nonexistent_element = first_element - 1;
 int element;

 /* Idiotproofing belongs here. */
 for (element = first_element;
 element < number_of_elements; element++) {
 if (array[element] == target_value) {
 return element;
 } /* if (array[element] == ...) */
 } /* for element */
 return nonexistent_element;
} /* linear_search */

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 5

Linear Search Example #1

element

Searching for -86.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 6

Linear Search Example #2

element

Searching for -86.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 7

Linear Search Example #3

element

Searching for -86.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 8

Linear Search Example #4

element

Searching for -86.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 9

Linear Search Example #5

element

Searching for -86.

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 10

Linear Search Example #6

-23 97 18 21 5 -86 64 0 -37

element

Searching for -86: FOUND!

Search Lesson
CS1313 Spring 2024 11

How Long Does Linear Search Take?
Okay, great, now we know how to search.
But how long will our search take?
That’s really three separate questions:
 How long will it take in the best case?
 How long will it take in the worst case?
 How long will it take in the average case?

Search Lesson
CS1313 Spring 2024 12

Linear Search: Best Case
How long will our search take?
In the best case, the target value is in the first element of

the array.
So the search takes some tiny, and constant, amount of time.
Computer scientists denote this O(1) –

which will be explained later.
In real life, we don’t care about the best case, because

it so rarely actually happens.

Search Lesson
CS1313 Spring 2024 13

Linear Search: Worst Case
How long will our search take?
In the worst case, the target value is in the last element of

the array.
So the search takes an amount of time proportional to

the length of the array.
Computer scientists denote this O(n) –

which will be explained later.

Search Lesson
CS1313 Spring 2024 14

Linear Search: Average Case
How long will our search take?
In the average case, the target value is somewhere in the array.
In fact, since the target value can be anywhere in the array,

any element of the array is equally likely.
So on average, the target value will be in the middle of the array.
So the search takes an amount of time proportional to

half the length of the array – which is proportional to
the length of the array – O(n) again!

Search Lesson
CS1313 Spring 2024 15

Why Do We Care About Search Time?
We know that time is money.
So finding the fastest way to search (or any task) is good,

because then we’ll save time, which saves money.

Search Lesson
CS1313 Spring 2024 16

“Big-O” Notation #1
Suppose we can describe the amount of time it takes to do

a task in terms of the number of pieces of data in the task.
For example, suppose that our search algorithm takes

3n + 12 time units to execute, where n is the array length.
Well, as n becomes very big – a million, a billion, etc –

then we stop caring about the 12,
because the 12 is basically zero compared to the 3n term.

Search Lesson
CS1313 Spring 2024 17

“Big-O” Notation #2
Suppose we can describe the amount of time it takes to do

a task in terms of the number of pieces of data in the task.
For example, suppose that our search algorithm takes

3n + 12 time units to execute, where n is the array length.
No matter the size of n, the 3 in 3n isn’t all that interesting,

because running on a different kind of computer
changes the actual time cost of a “time unit.”

Search Lesson
CS1313 Spring 2024 18

“Big-O” Notation #4
Suppose we can describe the amount of time it takes to do

a task in terms of the number of pieces of data in the task.
For example, suppose that our search algorithm takes

3n + 12 time units to execute, where n is the array length.
So, we really only care about the n in 3n + 12.

Search Lesson
CS1313 Spring 2024 19

“Big-O” Notation #5
Now, suppose we have an algorithm that, for n pieces of data,

takes 0.03n2 + 12n + 937.88 time units.
Again, we don’t care about the constants.
And, as n becomes big – a million, a billion, etc –

we no longer care about the n term (12n), because
the n term grows far far slower than the n2 term.

Nor do we care about the constant term (937.88),
which doesn’t grow at all.

That is, as n becomes big, the smaller terms are
so tiny as to be pretty much zero.

Search Lesson
CS1313 Spring 2024 20

“Big-O” Notation #6

In the general case, suppose an algorithm on n pieces of data takes:
 cknk + ck-1nk-1 + ck-2nk-2 + ... + c1n + c0
for constants c0, c1, etc.
Keep in mind the principles that we’ve already seen:
 We don’t care about the constants ci.
 We don’t care about the terms smaller than nk.
We really only care about nk.

So we say that this algorithm has time complexity “of order nk.”
We denote this O(nk).
We pronounce it “big-O of n to the k.”

Search Lesson
CS1313 Spring 2024 21

Linear Search Code, Again

int linear_search (float* array,
 int number_of_elements,
 float target_value)
{ /* linear_search */
 const int first_element = 0;
 const int nonexistent_element = first_element - 1;
 int element;

 /* Idiotproofing belongs here. */
 for (element = first_element;
 element < number_of_elements; element++) {
 if (array[element] == target_value) {
 return element;
 } /* if (array[element] == ...) */
 } /* for element */
 return nonexistent_element;
} /* linear_search */

-23 97 18 21 5 -86 64 0 -37

Search Lesson
CS1313 Spring 2024 22

Linear Search is O(n) in the Average Case
Recapping, linear search is O(n) in the average case

(and in the worst case, but with different constants).
But what if we expect to do lots of searches through our dataset

of length n?
What if we expect to do n searches on our n data?
Well, the time complexity will be n . O(n), which is to say O(n2).
You can imagine that, when n is big – a million, a billion, etc –

this is terribly inefficient.
Can we do better?

Search Lesson
CS1313 Spring 2024 23

A Better Search?
Consider how you search for someone in the phone book –

say, Henry Neeman.
You start with the first letter of their last name, N.
You guess roughly where N would be in the phonebook.
You open to that page.
If you’re wrong, you move either forward or backward in the book

– that is, if you actually opened to J, you move forward,
but if you opened to T, you move backward.

You keep repeating this action until you find Neeman.

Search Lesson
CS1313 Spring 2024 24

Faster Search Requires Sorted Data
Why not use linear search?
Linear search means start at the beginning, and look at

every piece of data, until you find your target.
And you have to do this for each and every such search.
This is much much slower than

the way you search a phonebook in real life.
Why?
The reason you can do the phonebook search so quickly

is because the names in the phonebook are sorted –
specifically, they’re in alphabetical order by last name,
then by first name.

Search Lesson
CS1313 Spring 2024 25

Binary Search
The general term for a smart search through sorted data is a

binary search.
1. The initial search region is the whole array.
2. Look at the data value in the middle of the search region.
3. If you’ve found your target, stop.
4. If your target is less than the middle data value, the new

search region is the lower half of the data.
5. If your target is greater than the middle data value, the

new search region is the higher half of the data.
6. Continue from Step 2.

Search Lesson
CS1313 Spring 2024 26

Binary Search Code
int binary_search (float* array, int number_of_elements,
 float target_value)
{ /* binary_search */
 const int first_element = 0;
 const int nonexistent_element = first_element - 1;
 int low_element, middle_element, high_element;

 /* Idiotproofing goes here. */
 /* Start with the entire array as the search region. */
 low_element = first_element;
 high_element = number_of_elements – 1;

Search Lesson
CS1313 Spring 2024 27

Binary Search Code
while ((low_element > first_element) &&

 (high_element < number_of_elements) &&
 (low_element < high_element)) {
 /* Examine the middle of the current search region. */
 middle_element = (low_element + high_element) / 2;
 /* What should we search next? */
 if (array[middle_element] < target_value) {
 /* Reduce the search region to the lower half. */
 high_element = middle_element - 1;
 } /* if (array[middle_element] < target_value) */
 else if (array[middle_element] > target_value) {
 /* Reduce the search region to the higher half. */
 low_element = middle_element + 1;
 } /* if (array[middle_element] > target_value) */
 else {
 /* Target has been found, so stop searching. */
 low_element = middle_element;
 high_element = middle_element;
 } /* if (array[middle_element] > ...)...else */
 } /* while (low_element < high_element) */
 if (high_element == low_element) {
 return middle_element;
 } /* if (high_element == low_element) */
 return nonexistent_element;
} /* binary_search */

Search Lesson
CS1313 Spring 2024 28

Binary Search Example #1

low

Searching for 18.

middle high

-86 -37 -23 0 5 18 21 64 97

Search Lesson
CS1313 Spring 2024 29

Binary Search Example #2

-86 -37 -23 0 5 18 21 64 97

low

Searching for 18.

middle

high

Search Lesson
CS1313 Spring 2024 30

Binary Search Example #3

low

Searching for 18: FOUND!

middle
high

-86 -37 -23 0 5 18 21 64 97

Search Lesson
CS1313 Spring 2024 31

Time Complexity of Binary Search #1
How fast is binary search?
Think about how it operates: after you examine a value,

you cut the search region in half.
So, the first iteration of the loop, your search region is

the whole array.
The second iteration, it’s half the array.
The third iteration, it’s a quarter of the array.
...
The kth iteration, it’s (1/2k-1) of the array.

Search Lesson
CS1313 Spring 2024 32

Time Complexity of Binary Search #2
How fast is binary search?
For the kth iteration of the binary search loop, the search

region is (1/2k-1) of the array.
What’s the maximum number of loop iterations?

log2n
That is, we can’t cut the search region in half more than that

many times.
So, the time complexity of binary search is O(log2n).

Search Lesson
CS1313 Spring 2024 33

Time Complexity of Binary Search #3
How fast is binary search?
We said that the time complexity of binary search is O(log2 n).
But, O(log2 n) is exactly the same as O(log10 n)

is exactly the same as O(ln n)
is exactly the same as O(logb n) for any base b.

Why?
Well, we know from math class that

loga x ≡ logb x / logb a
So the relationship between logs with different bases is

simply a constant:
1 / logb a

Therefore, O(log n) is the same as O(logb n) for any base b –
we don’t care about the base,
because we don’t care about the constant.

Search Lesson
CS1313 Spring 2024 34

Need to Sort Array
Binary search only works if the array is already sorted.
It turns out that sorting is a huge issue in computing.

	Search Lesson Outline
	How to Find a Value in an Array?
	Linear Search
	Linear Search Code
	Linear Search Example #1
	Linear Search Example #2
	Linear Search Example #3
	Linear Search Example #4
	Linear Search Example #5
	Linear Search Example #6
	How Long Does Linear Search Take?
	Linear Search: Best Case
	Linear Search: Worst Case
	Linear Search: Average Case
	Why Do We Care About Search Time?
	“Big-O” Notation #1
	“Big-O” Notation #2
	“Big-O” Notation #4
	“Big-O” Notation #5
	“Big-O” Notation #6
	Linear Search Code, Again
	Linear Search is O(n) in the Average Case
	A Better Search?
	Faster Search Requires Sorted Data
	Binary Search
	Binary Search Code
	Binary Search Code
	Binary Search Example #1
	Binary Search Example #2
	Binary Search Example #3
	Time Complexity of Binary Search #1
	Time Complexity of Binary Search #2
	Time Complexity of Binary Search #3
	Need to Sort Array

