
CS 1313 010: Programming for Non-Majors, Spring 2025
Programming Project #6: Big Statistics Functions

Due by Wednesday Apr 23 2025 9:50am Central Time
Please feel free to discuss these questions with your classmates, but NOT to copy each other.

NOTE: Except where and as explicitly permitted in writing
(for example, in a Programming Project specification),

you are ABSOLUTELY FORBIDDEN to COPY EVEN A SINGLE CHARACTER from,
or to have ANY shared code with, ANY other entity,

whether a human being (regardless of whether in CS1313 or not),
a text resource, a computing resource or anything else,

whether in person, on a local computer, online or anywhere else.
It’s INCREDIBLY EASY for us to detect such copying, so DON’T EVEN THINK ABOUT IT!

NOTE: No assignment submissions will be accepted after Fri May 2 2025 9:50am Central Time
except by arrangement made in writing (for example, email) no later than Wed Apr 30 2025 9:50am
Central Time.

This sixth project will give you experience with user-defined functions, and will also give you
experience rewriting an existing program to new specifications. This project will use a similar
development process to the one you used for Programming Projects #2, #3, #4 & #5, and will be
subject to the same rules and grading criteria, along with several new criteria.

To get full credit on this programming project, you MUST use user-defined functions appropri-
ately.

I. WHAT TO DO FIRST

Before you begin, copy your original C source file from Programming Project #5 into a new file.
You will modify the new copy. For example:

cp big statistics.c big statistics function.c

The copy that you will modify will be big statistics function.c; for example:

nano big statistics function.c

II. WHAT TO DO SECOND

Add the make entry for the new program into your makefile in the usual way, and adjust the
clean entry for it, and do the same for the example program (see below).

III. WHAT TO DO THIRD

The example program is in “User Defined Functions Lesson 1,” slides #22-29 and the
arithmetic mean function on slide # 6 of the same lecture slide packet.

Type in, compile and run that example program, using the input values on slide #30 of the same
lecture slide packet.

NOTICE, in slide #29, the text immediately after the block close of the main function.

Then, comment that example program, and compile and run it again, with the same inputs.

Then script it in the usual way, with the same inputs.

1

IV. PROJECT DESCRIPTION

You’re going to modify your big statistics program from Programming Project #5 by converting
the various calculations into user-defined functions, which you will call from the main function.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
This programming project specification contains many small code examples. In most cases, these
code examples will be extremely useful in your actual PP#6. WE URGE YOU TO USE THEM.

A. Function Definitions

You will define the following functions: After each semicolon statement terminator, have exactly 33 blank spaces and nothing else.

1. Name: arithmetic mean
Arguments: a float array and its int length.
Returns: the float arithmetic mean of the elements of the array.

2. Name: geometric mean
Arguments: a float array and its int length.
Returns: the float geometric mean of the array.

3. Name: root mean square
Arguments: a float array and its int length.
Returns: the float root mean square of the array.

4. Name: harmonic mean
Arguments: an array and its length.
Returns: the float harmonic mean of the array.

For each of the two tasks above, you MUST define EXACTLY ONE function to perform it. Each
of these functions will be called one or more times (for example, for the arithmetic mean of the
first input array, for the arithmetic mean of the second input array, etc); see below.

ADVICE: Copy the first of these functions (arithmetic mean) CHARACTER-FOR-
CHARACTER from the arithmetic mean function from the lecture slide packet titled
“User-Defined Functions Lesson 1,” slide #6; the other will then follow naturally.

NOTE: A function definition is ABSOLUTELY FORBIDDEN to be inside another function (for
example, a function definition is ABSOLUTELY FORBIDDEN to be inside the main function);
instead, each function definition MUST be AFTER the block close of the preceding function.

The main function should be the FIRST function in your source file, at the top of the file. All
the other functions should then follow, in the same order as shown above.

B. Function Prototypes

In your main function, in your declaration section, be sure to declare appropriate function
prototypes. After each semicolon statement terminator, have exactly 33 blank spaces and nothing else.

ADVICE: Base your function prototypes on the function prototype from slide #22 of the lecture
slide packet titled “User-Defined Functions Lesson 1.” You can learn more about function proto-
types from slides #37-38 of the same lecture slide packet.

2

C. Function Calls

After you have defined (and successfully compiled) a function, the next step is to call it. In the
main function, replace the code for calculating the appropriate quantity with a call (or multiple
calls) to the appropriate function that you have defined.

ADVICE: This will be similar to the function calls in the main function in the example program.

ADVICE: This is the process that you should use, for each of the functions described above.

1. Write a particular function definition, a little bit at a time, constantly compiling and debug-
ging.

2. Successfully compile your code with the completed function.
3. Copy the function header, and in your main function, paste it at the end of the declaration

section as a prototype, being sure to put a statement terminator (semicolon) at the end of the
prototype.

4. Successfully compile your code.
5. In your main function, “comment out” the code that performs the same task (that is, turn

that fragment of code into a big comment; see below).
6. Place the call to the function immediately after the code that you just commented out.
7. Successfully compile your code.
8. THOROUGHLY test and debug the function.
9. When the function is thoroughly tested and debugged, delete the code that you commented

out (in the main function).

You are ABSOLUTELY FORBIDDEN to have any commented-out code in the final script file
that you submit.

3

V. COMMENTING OUT CODE

Commenting out code means turning the code into a comment, so that it no longer is executed. For
example, consider this code:

sum = initial_sum;
for (element = first_element;

element < number_of_elements; element++) {
sum += list1_input_value[element];

} /* for element */
arithmetic_mean1 = sum / number_of_elements;

Here’s what it looks like after commenting it out and replacing it with a function call:

/*
sum = initial_sum;
for (element = first_element;

element < number_of_elements; element++) {
sum += list1_input_value[element];

} // for element //
arithmetic_mean1 = sum / number_of_elements;

*/
arithmetic_mean1 =

arithmetic_mean(list1_input_value, number_of_elements);
NOTICE that any comments contained in the code that is being commmented out MUST BE
ALTERED, to avoid having the end of that comment being mistaken for the end of the comment
being used to comment out the code. For example, look at the block close of the for statement,
above. It is recommended that you replace such comments’ delimiters with pairs of slashes.

For example, this:

...
} /* for element */
...

becomes this:

/*
...
} // for element //
...

*/

That way, the comment close delimiter that had been at the end of the comment following
the for loop’s block close will not be mistaken for the end of the comment that comments out
the code.

You are ABSOLUTELY FORBIDDEN to have any commented-out code in the final script file
that you submit.

4

VI. DELETING CODE THAT HAS BEEN COMMENTED OUT

Once you have THOROUGHLY tested and debugged the function and the call(s) to the function,
then delete the code in the main function that you commented out.

For example, this:

/*
sum = initial_sum;
for (element = first_element;

element < number_of_elements; element++) {
sum += list1_input_value[element];

} // for element //
arithmetic_mean1 = sum / number_of_elements;

*/
arithmetic_mean1 =

arithmetic_mean(list1_input_value, number_of_elements);

becomes this:

arithmetic_mean1 =
arithmetic_mean(list1_input_value, number_of_elements);

You are ABSOLUTELY FORBIDDEN to have any commented-out code in the final script file
that you submit.

5

VII. ADDITIONAL GRADING CRITERIA

Please bear in mind that all grading criteria for Programming Projects #2, #3, #4 & #5 apply. The
new criteria are: After each semicolon statement terminator, have exactly 33 blank spaces and nothing else.

1. Function names: Every function MUST have a meaningful function name. For this project,
you MUST use the function names provided in this specification. You are
ABSOLUTELY FORBIDDEN to name any function with a name that has anything to do
with list1 input value etc.

2. Indentation: Function headers and their associated block opens and block closes MUST be
indented exactly the same amount as the main function header and its associated block
open and block close (that is, flush to the left), and statements inside a function MUST be
indented exactly as if they were inside the main function (that is, 4 spaces for each level
of indenting).

3. Comment blocks before functions: EVERY function header (except the main function
header) MUST be preceded by a comment block, similar to the comment block at the begin-
ning of the program, that contains the following information:

(a) the name of the function;
(b) the function’s return type;
(c) a description of the meaning of the function’s return value;
(d) a list of the function’s formal arguments, in the order in which they are listed in the

function’s formal argument list, each with a helpful explanation;
(e) a description of what the function does and how it works.

For example:

/*

*** Function: arithmetic_mean ***
*** Return Type: float ***
*** Return Value: the arithmetic mean of an array of floats ***
*** Arguments: ***
*** array: the array of values ***
*** number_of_elements: the length of the array ***
*** Description: Calculates the arithmetic mean of a float ***
*** array by summing the elements and then dividing by ***
*** the number of elements. ***

*/

WE URGE YOU TO USE THE COMMENT JUST ABOVE IN YOUR PP#6!

4. Comments inside functions: The rules for comments inside user-defined functions are
EXACTLY THE SAME as the rules for comments inside the main function.

5. Return type: The return type of every function MUST be appropriate.
6. Formal argument names: The function’s formal arguments MUST have names that are

appropriate in the context of the function definition, rather than in the context of the
function that calls the function. For example, you are ABSOLUTELY FORBIDDEN
to use formal argument names that have anything to do with list1 input value,
list2 input value, etc.

6

7. Array arguments and length arguments: If a function has an array argument, then it
MUST also have a length argument for that array. (If it has multiple arrays of the same
length, then it may have a single length argument that describes the shared length of the
multiple arrays.)

8. Formal argument/actual argument matching: In the main function (and in any user-
defined function that calls another user-defined function), the actual arguments in the call to
a function MUST be appropriate for the formal arguments in that function’s definition; that
is, there MUST be the same number of arguments, and they MUST have the same order,
data types and purposes. However, the actual arguments in the call and the formal arguments
in the function definition DON’T have to have the same names; in fact, in most cases they
SHOULDN’T have the same names.

9. Declaration order inside functions: Within ANY function definition (including the main
function), you may declare any local named constants and local variables that you need. The
order of declarations MUST be:

(a) local named constants: float scalars followed by int scalars;
(b) local variables, in the following order:

i. arrays: float arrays followed by int arrays;
ii. scalars: float scalars followed by int scalars.

10. Function prototype declarations: In the main function (and in any user-defined function
that calls another user-defined function), there MUST be a function prototype declaration for
every function that is to be called by that function, as shown in the lecture slide packet “User
Defined Functions Lesson 1,” slides #37-38. These declarations MUST occur AFTER all
named constant and variable declarations. Thus, the order of declarations in the main
function MUST be:

(a) named constants subsection:
i. float named constants;

ii. int named constants;
(b) variables subsection:

i. array variables:
A. float array variables;
B. int array variables;

ii. scalar variables:
A. float scalar variables;
B. int scalar variables;

(c) function prototypes subsection:

i. float function prototypes (that it, function prototypes with return type float);
ii. int function prototypes (that it, function prototypes with return type int).

11. Argument idiotproofing: EVERY argument in each function’s argument list that needs
idiotproofing MUST be idiotproofed, to ensure that it has an appropriate value. YOU are
responsible for figuring out all of the possible cases of idiocy that could come up.

12. Return value: Every function MUST return an appropriate value of the appropriate type.

7

13. Comments for user-defined function’s block open and close: For each user-defined func-
tion, the comment on the same line as, and labeling, the block open should simply be a
blank space after the block open, then the comment open delimiter, one blank space, the
name of the function, one blank space, and the comment close delimiter. For example, see
“User-Defined Functions Lesson 1,” slide #6. The same will be true for each user-defined
function’s block close.

14. Delete commented out statements: It is ABSOLUTELY FORBIDDEN for any function,
including the main function, to contain any statements that have been commented out.
That is, you MUST delete ALL of the statements that have been commented out before
scripting.

15. Location of user-defined functions: You MUST place your function definitions at the bot-
tom of the same source file that contains your main function.

16. For PP#5, you are allowed to use ONLY the following kinds of programming constructs in
your C source file, but NO OTHER KINDS OF PROGRAMMING CONSTRUCTS:

• all programming constructs allowed in PP#2, PP#3, PP#4 and PP#5;
• prototypes of user-defined functions;
• calls to user-defined functions;
• definitions of user-defined functions.

Use of any other kind of programming constructs in your C source file might result in
SEVERE PENALTIES, at the instructor’s sole discretion.

VIII. WORKING TOGETHER

Because this topic has given students difficulty in the past, you are permitted, and indeed en-
couraged, to work with your classmates to figure out how to define and use functions properly.
However, you MUST submit a revised version of YOUR OWN PP#5, and you are
ABSOLUTELY FORBIDDEN TO COPY ANY PORTION OF ANYONE ELSE’S CODE.

NOTE: You MUST list in the References section of your summary essay EVERYONE who you
worked with, were helped by, or helped, except the CS1313 instructor and TAs.

IX. RUNS

Runs for this programming project will be the same as for Programming Project #5, and will use
the same data files from the same directory in the same order.

X. WHAT TO SUBMIT

Upload to Canvas summary essay, example script file, C source file and script file.

For PP#6, there WON’T be a checklist.

8

EXTRA CREDIT

HELP SESSION BONUS EXTRA CREDIT

You can receive an extra credit bonus of as much as 5% of the total value of PP#6 as follows:

1. Attend at least one regularly scheduled CS1313 help session for at least 30 minutes, through
Wed Apr 23.

2. During the regularly scheduled help session that you attend, work on CS1313 assignments
(ideally PP#6, but any CS1313 assignment is acceptable). YOU CANNOT GET EXTRA
CREDIT IF YOU DON’T WORK ON CS1313 ASSIGNMENTS DURING THE HELP
SESSION.

BONUS VALUE NOTICE: Through Tue Apr 15, the extra credit bonus will be worth 5% of the
total value of PP#6; from Wed Apr 21 through Wed Apr 23, the extra credit bonus will be worth
only 2.5% of the total value of PP#6. That is, YOU’LL GET TWICE AS MUCH EXTRA
CREDIT DURING THE FIRST WEEK AS DURING THE FINAL WEEK.

9

