CS 1313 010: Programming for Non-majors in C, Spring 2025
Programming Project #2: Census
Due by Wednesday February 12 2025 9:50am Central Time

This 2nd assignment will help you learn how to design, develop, test and debug your own
C program, as well as declaring variables, inputting and outputting. You will also learn to
add new projects to your makefile. You MUST follow all the instructions you see in this document.

I. PROBLEM DESCRIPTION

You are a software developer for the United States Census Bureau, working on the 2025 Census.

The particular program that you’re developing will ask three questions about a census subject:

1. the average number of cell phone calls that the subject makes per week;

2. the average number of photos that the subject posts to social media per month;

3. the subject’s 9-digit ZIP code (also known as ZIP+4).
Notice that the average number of cell phone calls that the subject makes per week
MIGHT NOT BE AN INTEGER. For example, a person might average 12.25 cell phone calls
per week. Likewise, a person might average 8.75 photos posted to social media per month.

Note that a number that doesn’t have to be an integer is known in mathematics as a real number,
and is also known in computing as a floating point number.

On the other hand, notice that a person’s 9-digit ZIP code (ZIP+4) can be expressed as two integers,
separated by a hyphen: the basic part and the add-on part! — for example, Schenectady NY has a
5-digit ZIP code of 12345, so with an add-on of 6789, the 9-digit ZIP code (ZIP+4) is:

12345-6789

So, this program will have a user input two real numbers (average number of cell phone calls made
per week, average number of photos posted to social media per month). and two integers (the parts
of their 9-digit ZIP code), and then output those numbers in a specific format.

Write a program to perform the above task. Note that your program MUST begin with a declaration
section in which you declare all necessary variables. This will be followed by the execution section
(body), which will:

1. greet the user and explain what the program does, and then

2. prompt the user and input the four numbers, and then

3. output the four numbers.

Details follow. Please read all of this specification CAREFULLY.
Remember, every word Dr. Neeman writes down is PURE GOLD.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
This Programming Project (PP) specification contains many small code examples. Most of these
code examples will be very useful in your actual PP#2. WE URGE YOU TO USE THEM.

NOTE: Except where and as explicitly permitted in writing (for example, in a PP specification,
as above), you are ABSOLUTELY FORBIDDEN to COPY EVEN A SINGLE CHARACTER
from, or to have ANY shared code with, ANY other entity, whether a human being, a text resource,

'https://en.wikipedia.org/wiki/ZIP_Code#ZIP+4

1

a computing resource or anything else, whether in person, on a local computer, online or anywhere
else. It’s INCREDIBLY EASY for us to detect copying, so DON’T EVEN THINK ABOUT IT!

II. WHAT TO DO FIRST: Insert an Entry for the New Program into Your Makefile

AS THE VERY FIRST STEP, in your makefile, insert a makefile entry for the new program, so
that, when you’re ready to compile your new program, you can use make instead of having to
use the gcc command directly (which would risk disaster).

Your C source file MUST be named
census.c

and your executable MUST be named
census

Here’s how: Using your preferred text editor (for example, nano), edit your makefile (which is
named makefile) to include the following lines at the TOP of the makefile, ABOVE the make
entry for PP#1, with a blank line between the entries for PP#2 and PP#1:

census: census.cC
gcc =0 census census.cC

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!

e Inthe gcc command, the filename after —o should be the executable (NO .c extension),
and the filename at the end should be the C source file (WITH the .c extension).

e DON’T DELETE THE MAKE ENTRY FOR PROGRAMMING PROJECT #1, nor
any other make entry, EVER.

e On the first line, above, between the colon and the name of the C source file, there are one
or more tabs (on most keyboards, it’s in the upper left, to the left of the @ key). There are
NO SPACES between the colon and the filename.

e On the second line, immediately before the gcc, there are one or more tabs. There are
NO SPACES immediately before the gcc.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
Also in the makefile, update the clean entry (the bottommost entry in the makefile) by putting
in another rm command, as the LAST rm command in the clean entry, like this:

clean:
rm -f my number
rm -f census

NOTES:

e DON’T DELETE THE rm COMMAND FOR PROGRAMMING PROJECT #1, nor
any other rm command, EVER.

e In the new rm command, above, immediately before the rm, there are one or more tabs.
There are NO SPACES immediately before the rm.

e NEVER put ANYTHING on the same line as clean: regardless of what it may be that
you want to put there. LEAVE THAT LINE COMPLETELY ALONE!

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
Inthe clean entry, the file to be removed with the rm should ALWAYS ALWAYS ALWAYS
be the EXECUTABLE (for PP#2, census) and NEVER NEVER NEVER a source file

(for example, it SHOULDN’T be census. c).

III. WHAT TO DO SECOND: EXAMPLE PROGRAM

DO ALL OF THE FOLLOWING BEFORE DOING ANY OF SECTION IV.

The following is worth 10% of the total value of PP#2 (a full letter grade):
1. In the lecture slide packet titled “Standard I/O Lesson,” on slide #21, find the example
C source file named:
read_list.c

2. If you aren’t already logged in to ssh.ou.edu, log in.

3. If you aren’t already in your CS1313 subdirectory, change directory to there.
NOTE: For EVERY Programming Project, you MUST do ALL of your work in your
CS1313 directory, WITHOUT EXCEPTION.

4. Using your preferred text editor (for example, nano), edit your makefile to add an
entry for read_11st, as described in this PP#2 specification, page 2, section II. Put the
new make entry BETWEEN the makefile entry for census and the makefile
entry for my_number, with a blank line above this new makefile entry and a blank
line below this new makefile entry, like this:

census: census.c
gcc —-o census census.c
read list: read list.c

gce -o read list read_list.c

my_number: my_number.c
gcc -o my_number my_ number.c

5. While still in your makefile, update the clean entry to add an rm command for
read_1l1ist, as described in section II, between the rm command for census and the

rm command for my _number, like this:
clean:

rm -f my number
rm -f read list
rm -f census

6. Save and exit from editing your makefile.

7. Using your preferred text editor (for example, nano), edit a new C source file named:
read_list.c
NOTE: You can find out how to edit a file that doesn’t exist yet, in this PP#2 specification,
at the top of page 5, the beginning of section I'V.

8. Type in, BY HAND, the C source code for
read_list.c

that appears in “Standard I/O Lesson,” slide #21.
NOTE: Copy-and-paste WON’T WORK PROPERLY for this!

9. In read_1list.c, make sure that the indenting is correct, in compliance with
PP#2 grading criterion #11, on page 11 of this PP#2 specification.

10. In read_1list.c, make sure to comply with PP#2 grading criterion #21, on page 12 of
this PP#2 specification.

11. When you’re done editing read_1list.c, save and exit.

3

12. Compile the program, using the following command:
make read_list

13. If the program doesn’t compile, then fix the C source file read_list.c, and return to
step II1.12, above.

14. Run the executable, using the input values in “Standard I/O Lesson,” slide #22.
DON’T do the gcc command!

15. If the executable produces the wrong output, then fix the C source file read_1ist.c, and
return to step I11.12, above.

16. Once the program runs correctly, using your preferred text editor (for example, nano),
edit the C source file read_list.c.

17. Comment the example program’s C source file read_1ist.c throughout the entire
C source file, using the PP#2 grading criteria #1(a)-(g) on page 9, based on the comments in
my_number.c from PP#1. See, for example, “Software Lesson 1,” slides #20-22.

18. When you’re done adding in all the comments to read__1ist.c, save and exit.

19. Compile the program, again using the following command:
make read_list

20. If the program doesn’t compile, then fix the C source file read_list.c, and return to
step IIL.19, above.

21. Run the executable, again using the input values on “Standard I/O Lesson,” slide #22.
DON’T do the gcc command!

22. If the executable produces the wrong output, then fix the C source file read_1ist.c, and
return to step I11.19, above.

23. Once the commented version of the program works correctly, create a script file named
pp2 _example.txt, using the method described in the PP#1 specification, section VIII,
pages 18-20, but using the script file named
pp2 _example.txt
and the source file named
read_list.c
and the executable named

read_list
And do the ONE RUN described in step 21, above.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
This example program here in section III is SO IMPORTANT that it’s worth 10% of the total
value of PP#2 (a FULL LETTER GRADE).

It MUST BE COMPLETED BEFORE CONTINUING ON TO SECTION IV AND BEYOND
(writing census.c and so on).

If you do ANY of section IV or beyond (writing census.c and so on) before completing ALL
of section III, then you might LOSE ALL OF THE VALUE OF THIS SECTION — that is,
you’d LOSE A FULL LETTER GRADE on PP#2.

And it’1l be straightforward for us to tell whether you’ve violated this rule.
Therefore, COMPLETE section III BEFORE going on to anything else.

4

IV. DETAILED DESCRIPTION OF THE NEW PROGRAM

WARNING: If you haven’t already completed section III, go back and complete it
BEFORE doing this section, or you could lose a FULL LETTER GRADE on PP#2.

HOW TO EDIT A FILE THAT DOESN’T EXIST YET

As noted in section II, above, your C source file for PP#2 MUST be named
census.c

and your executable MUST be named

census

But when you start working on PP#2, the C source file named census.c doesn’t exist yet.
Question: If a file doesn’t exist yet, how can you edit it?

Answer: Pretend that the file already exists, and edit it just as if that were true. The first time you
save what you’re editing, the file will come to exist.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
When you’re editing a file, remember to save your work OFTEN, preferably every few minutes.

A. BASIC STRUCTURE OF THE PROGRAM

NOTE: You MUST use the lecture slide packets titled “C Introduction,” “Variables” and “Standard
I/0” to complete this project. You should study every single slide CAREFULLY. You can also
look at the “Software” and “Constants” packets, but the bulk of the crucial information will be in
the “C Introduction,” “Variables” and “Standard 1/0O” packets.

OTHER THAN COMMENTS (see Grading Criteria, below), the program MUST
begin with the following preprocessor directive:

#include <stdio.h>

OTHER THAN COMMENTS (see Grading Criteria), the program MUST then have the main
function header, followed, on the next line, by the main function block open on a line by itself,
and, AT THE END OF THE PROGRAM, the main function block close on a line by itself.

The main function block open and the main function block close will each have, on the same line,
a blank space, then the comment open delimiter, then a blank space, then the word main in all
lower case, then a blank space, then the comment close delimiter.

So the basic structure of the program, OTHER THAN COMMENTS, will look like this:

#include <stdio.h>

int main ()
{ /* main */

} /* main */
WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

INSIDE the main function — that is, between the block open and the block close of the main
function — FIRST should be the declaration section, FOLLOWED BY the execution section
(body) of the program, IN THAT ORDER.

B. STRUCTURE OF THE DECLARATION SECTION

In the declaration section, OTHER THAN COMMENTS (see Grading Criteria, below), FIRST
should be ALL float variable declarations, FOLLOWED BY ALL int variable declarations.

If you wish, you may put multiple variables of the SAME DATA TYPE in the same declaration
statement, or you may use an individual declaration statement for each variable, or some of each.

C. STRUCTURE OF THE EXECUTION SECTION (BODY)

The EXECUTION SECTION (BODY) of the program MUST have the following structure and
MUST be in the following order — interleaving these pieces is ABSOLUTELY FORBIDDEN:

1. Greeting Subsection: Your program MUST begin by outputting a helpful message telling
the user what the program does. This message may be a single line of output text, or multiple
lines of output text. ALL OUTPUTS, THROUGHOUT THE ENTIRE PROGRAM,
MUST BE MEANINGFUL, COMPLETE ENGLISH SENTENCES.

2. Input Subsection

(a) Prompt for and input the first real (floating point) quantity:

i. Prompt the user to input the subject’s average number of cell phone calls made
per week.

ii. Input the subject’s average number of cell phone calls made per week.

(b) Prompt for and input the second real (floating point) quantity:
1. Prompt the user to input the subject’s average number of photos posted to social
media per month.

ii. Input the subject’s average number of photos posted to social media per month.

(c) Prompt for and input the subject’s 9-digit ZIP code (ZIP+4):

i. Prompt the user to input the subject’s 9-digit ZIP code (ZIP+4) as two integers,
separated by a blank space between the pair of integers (see section VI); for exam-
ple,

printf ("What is the subject’s 9-digit ZIP code, in two parts,\n");
printf (" separated by a blank space?\n");

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!
ii. Input the two integers in the above order, using a single scanf statement to
input both of the int variables from a single line of input text.

3. Output Subsection:

(a) Output the subject’s average number of cell phone calls made per week, including help-
ful explanatory text; for example, the output text might look like:

The subject makes an average of 12.25 cell phone calls per week.

(b) Output the subject’s average number of photos posted to social media per month, in-
cluding helpful explanatory text.

(c) Output the subject’s 9-digit ZIP code (ZIP+4), including helpful explanatory text. This
output MUST use the 2-part hyphenated notation shown on page 1. For example, the
output text might look like:

The subject’s 9-digit ZIP code was 12345-6789.

6

We encourage you to make your comments and outputs entertaining, but not profane or offensive.
The real (floating point) numbers that you output may come out with a weird format, like this:
The subject makes an average of 12.250000 cell phone calls per week.

For runs #2 and #3, which will use values that you’ve chosen, you may see something like this:

The subject makes an average of 13.599999 cell phone calls per week.

If either of these happens, DON’T PANIC! THESE ARE NORMAL, so don’t worry about them.
V. ADVICE ON HOW TO WRITE A PROGRAM

When you’re writing a program:

1. write a little bit of the source code;

. make;

if the make fails, then debug the source code;

when the make succeeds, then run;

if the run fails, then debug the source code;

when the run succeeds, then go on and write a little more, and so on.

N LA

For example, in the case of this program:

1. Start by writing the skeleton of the source code: the #include directive, the main
function header, the main function block open and block close. and appropriate comments
for these items. Then make, then run. (This run won’t be very interesting, unless the program
crashes, in which case debug it.)

2. Then, write the variable declarations, with appropriate comments. Then make, then run.
(This run won’t be very interesting, unless the program crashes, in which case debug it.)

3. Then, write the greeting subsection, with appropriate comments. Then make, then run.

4. Then, write the input subsection, with appropriate comments. Then make, then run.

5. Then, write the output subsection, with appropriate comments. Then make, then run.

Also, in your preferred text editor (for example, nano), FREQUENTLY SAVE YOUR WORK.
Specifically, we recommend that, in your preferred text editor, you should SAVE YOUR WORK
EVERY FEW MINUTES. (For example, in nano, press Ctr1-0 to save your work, and do
this every few minutes.)

NOTE: When you write a comment open delimiter (slash asterisk), you should IMMEDIATELY
write the comment close delimiter (asterisk slash) so that you don’t end up forgetting it later —
and then you can put the actual comment text in between.

Likewise, when you write a block open delimiter (open curly brace), you should IMMEDIATELY
write the block close delimiter (close curly brace) so that you don’t end up forgetting it later —
and then you can put the actual source code text of the main function in between.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
When you’re editing a file, remember to save your work OFTEN, preferably every few minutes.

VL. RUNS
In the script session that produces your script file (described below), you MUST run your program
three times. For the first run, use the following inputs:

e average number of cell phone calls made per week: 12.25;

e average number of photos posted to social media per month: 8.75;

e 9-digit ZIP code (ZIP+4) in two parts: 12345 6789 — note that this should be input as

12345 6789
but it should be output as
12345-6789

(along with helpful explanatory text).

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
When you INPUT the subject’s 9-digit ZIP code (ZIP+4) at runtime, YOU DON’T INPUT A
HYPHEN.

Instead, separate the pieces of the 9-digit ZIP code (ZIP+4) with spaces or carriage returns.

For the second and third runs, choose any VALID answers to these questions that you want, but
all three runs MUST have different inputs for all questions; that is, every question MUST have
different answers for each of the three runs, and all inputs within a run must differ from each other.

NOTE: You are ABSOLUTELY FORBIDDEN to use any ZIP+4 that starts with a zero in the
leftmost digit of either of the two pieces.

VII. WHAT TO SUBMIT
Before creating your script file, THOROUGHLY TEST AND DEBUG YOUR PROGRAM.

Once you are satisfied with your program, create your script file, which MUST be named:
pPp2.txt

Use the procedure described in the Programming Project #1 specification to create your script file,
except replacing census for my_number and census.c for my_number.c, and doing
three runs using the input values that you’ve tested (section VI, above).

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
CAREFULLY PROOFREAD YOUR SCRIPT FILE. Frequently, students lose SIGNIFICANT

CREDIT because of failure to proofread. Especially, CHECK YOUR MAKE COMMANDS to
be sure (a) that you did them and (b) that they worked properly.

Summary: You MUST create a summary essay following the same rules as in Programming

Project #1.
Download to PC: You MUST download your example script file pp2_example.txt, your

C source file census.c and your script file pp2.txt to the PC that you want to upload to
Canvas from, as you did for PP#1 (see the PP#1 specification, pages 21-22, section IX, but using
the filenames just listed).

Upload to Canvas: You MUST upload your summary essay, your example script file

pp2_example.txt, your C source file census.c and your script file pp2.txt to Canvas,
as you did for PP#1, but into this project’s Canvas dropbox (see the PP#1 specification, pages
24-25, section X.2, using the filenames listed just above).

8

VIII. GRADING CRITERIA
The following grading criteria will apply to ALL CS1313 programming projects, unless explicitly
stated otherwise.

Grading Criteria for Summary Essay, Script Files and Upload to Canvas:

The rules and grading criteria for the summary essay, the script file and uploading to Canvas, as
described in the Programming Project #1 specification, also apply to the summary essay, the script
files and uploading for Programming Project #2, and will also apply to all future Programming
Projects unless explicitly stated otherwise. Failure to upload the correct files to the correct place
in Canvas by the PP#2 deadline may cost you up to 5% of the total value of PP#2, right off the top
before any other deductions are applied.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
You MUST properly do the make clean and make census steps in your script. FAILING
TO PROPERLY DO THE make clean AND/OR make census STEPS, OR HAVING A
COMPILE FAIL DUE TO ERRORS, WILL COST YOU AT LEAST 50% OF THE POINTS
FOR THIS PROGRAMMING PROJECT, right off the top before any other deductions are
applied. COMPILER WARNINGS in response to the make census step — other than the
“clock skew”” warning — WILL COST YOU AT LEAST 25% OF THE POINTS FOR THIS
PROGRAMMING PROJECT, right off the top before any other deductions are applied.

Grading Criteria for C Source Code
1. Documentation MUST be similar to that in my_number. c, and will count for at least
10% of the total value of this project.

(a) The program MUST be preceded by a comment block, as shown in my _number. c.

(b) The declaration section and the execution section (body) MUST be clearly labeled, as
shown in my _number. c.

(c) Variable declarations MUST be preceded by comments explaining the nature and pur-
pose of each declared name, as shown in my_number. c.

(d) Each subsection of the execution section (body) of the program — greeting, input,
output — MUST be clearly labeled, as shown in my__number.c.

(e) EVERY executable statement MUST be preceded by a comment that clearly explains
what the statement does, well enough so that even a non-programmer could understand.
Exception: Multiple printf statements in a row that together output a single mes-
sage need a comment only before the first of them.

(f) ALL comments MUST use the format shown below. Specifically, the first line of the
comment MUST simply be the comment open delimiter (slash asterisk), and the last
line MUST simply be the comment close delimiter (asterisk slash). All other lines
MUST have, as their first non-blank character, an asterisk, followed by a blank space,
followed by the text of the comment. ALL of the asterisks in that comment MUST line
up with the text of the program statement that the comment describes. For example:

/ *

* Output to the terminal screen the subject’s

* average number of cell phone calls made per week.

*/

printf ("The subject averages %f cell phone calls made per week.\n",
average_weekly_cell_phone_calls);

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!
(g) C++-style comments that start with // are ABSOLUTELY FORBIDDEN.

9

. Block open/block close comments: The block open and block close for the main function
MUST each be followed, on the same line, by a comment indicating that the block that they
begin and end is the main function. Specifically, the line with the block open or the block
close MUST have the following structure: the block open or block close, followed by a
single blank space, followed by the comment open delimiter, followed by a single blank
space, followed by the keyword main in all lower case, followed by a single blank space,
followed by the comment close delimiter. For example:

{ /* main */

} /* main */
. Section order: The section order MUST be as follows: the declaration section, followed by

the execution section (body), as shown in my _number.c. Therefore, ALL declarations
MUST appear BEFORE ANY executable statements.

. Identifier structure: Identifiers such as variable names MUST be in ALL LOWER CASE,
except where upper case is appropriate as part of a proper name (for example,
population_of_Oklahoma). Adjacent words in an identifier MUST be separated by
an underscore.

. Favorite professor rule for identifiers: Identifiers such as variable names MUST strictly
observe the “favorite professor” rule, as described in the lecture slides (Variables Lesson,
slide #35). Meaningless, obscure or cryptic names will be penalized, as will abbreviations
that aren’t in common use in non-programming contexts.

. Data types: EVERY variable MUST have an appropriate data type. Inappropriate data
types will be penalized.

. Variable declaration grouping: Variable declarations MUST be grouped by data type; that
is, you MUST first declare ALL. float variables, followed by ALL int variables.

. Variable declaration statement structure MUST be as follows: the indentation, followed
by the data type, followed by one or more blank spaces, followed by the name of the variable,
followed by the statement terminator (or you may declare multiple variables in the same
declaration statement, separated by commas and with a statement terminator at the end, as
shown in the lecture slides).

. Variable declaration spacing MUST have the following property: The first character of the
first variable name of ALL declaration statements, regardless of data type, should be in the
same column of source code text. In the case of PP#2, this means that,ina float variable
declaration, there should be EXACTLY ONE blank space after the keyword float, and
inan int variable declaration, there should be EXACTLY THREE blank spaces after the
keyword int. (In other Programming Projects, the blank space counts may differ, but the
principle will be the same.) For example:

int main ()

{ /* main */
float average_weekly_ cell_phone_calls;
float average_monthly_photos_posted_to_social_media;
int zip_code_basic_part, zip_code_addon_part;

} /* main */

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

10

10. Multiple variables in the same declaration statement: An individual declaration state-

11.

12.

13.

ment may declare multiple variables, but it is STRONGLY RECOMMENDED that this be
done only when the variables are very closely related to one another. If an individual dec-
laration statement declares multiple variables, then in its comma-separated list of variable
names, each comma MUST be followed by a single blank space, as shown in the example
just above. If the multiple variables would exceed the proper length of a line of source code
text, then the declaration statement may continue on to the next line, in which case, in the
subsequent line(s) of the declaration statement, the first variable name of each line should
line up with the first variable name of the first line of the declaration statement.

Indentation MUST be used properly and consistently. The #include directive and the
main function header MUST NOT BE INDENTED AT ALL (that is, they MUST begin
in the leftmost column). Likewise, the main function’s block open (open curly brace {) and
block close (close curly brace }) MUST NOT BE INDENTED AT ALL. ALL OTHER
STATEMENTS, both declarations and executable statements, MUST be indented an addi-
tional FOUR SPACES beyond the function header. For example:

#include <stdio.h>

int main ()
{ /* main */

float average_weekly_cell_phone_calls;

printf ("The subject averages %f cell phone calls per week.\n",
average_weekly_cell_phone_calls);
} /* main */

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

NOTES:

(i) In CS1313, in any C source file, indenting with tabs instead of spaces is FORBIDDEN.
(i1) If a statement uses more than one line of source code text, then the second line (and
beyond) of source code text of that statement MUST be indented farther, preferably 4 spaces
farther than the first line of the statement, as shown in the example just above.

IMPORTANT IMPORTANT IMPORTANT IMPORTANT IMPORTANT!!!
Indenting is SO INCREDIBLY IMPORTANT that it’s worth at least 10% of your over-
all score on PP#2 (A FULL LETTER GRADE)! (And likewise on future PPs.)

Subsection order in the execution section: In the execution section, the subsection order
MUST be as follows: the greeting subsection, followed by the input subsection, followed by
the output subsection.

Execution subsection contents: In the execution section: the greeting subsection is
ABSOLUTELY FORBIDDEN to contain any inputs; in the input subsection, the only
outputs that are allowed are prompts for inputs; the output subsection is ABSOLUTELY
FORBIDDEN to contain any inputs.

11

14.

15.

16.

17.

18.

19.

20.

The length of each line of C source code text MUST be less than 80 characters (the width
of a typical PUTTY window); 72 characters or less is preferred.

The length of each line of output text MUST be less than 80 characters; 72 characters or
less is preferred.

printf WITHOUT placeholders: EVERY printf statement that DOESN’T con-
tain any placeholders MUST have the following structure: indentation, followed by the
word printf, followed by an open parenthesis, followed by a double quote, followed by
the text of the string literal (probably but not necessarily ending with a newline), followed
by a double quote, followed by a close parenthesis, followed by the statement terminator.
For example:

printf ("What is the subject’s 9-digit ZIP code, in two parts,\n");
printf ("separated by spaces)?\n");

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

printf WITH placeholders: EVERY printf statement that DOES contains one or
more placeholder(s) MUST have the following structure: indentation, followed by the word
printf, followed by an open parenthesis, followed by a double quote, followed by the text
of the string literal including placeholder(s) (probably but not necessarily ending with a new-
line), followed by a double quote, followed by a comma, followed by a blank space, followed
by the comma-separated list of variables whose values are replacing the placeholder(s), with
a blank space after each comma, followed by a close parenthesis, followed by the statement
terminator. For example:

printf ("The subject averages %f cell phone calls made per week.\n",
average_weekly_cell_phone_calls);

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

Newlines in printf statements. Every line of output text MUST end with a newline.

The last (or only) printf statement for a particular line of output text MUST have a
newline \n as the LAST characters in its string literal, immediately before the double
quote that ends that string literal. See above for examples.

scanf: EVERY scanf statement MUST have the following structure: indentation,

followed by the word scanf, followed by an open parenthesis, followed by a double quote,
followed by the text of the string literal for the placeholder(s), followed by a double quote,
followed by a comma, followed by a blank space, followed by the comma-separated list of
variables whose values are being input — each preceded by an ampersand & with no blank
space after the ampersand — with a blank space after each comma, followed by a close
parenthesis, followed by the statement terminator. For example:

scanf ("%f", &average_weekly_ cell_phone_calls);

WE URGE YOU TO USE THE CODE JUST ABOVE IN YOUR PP#2!

Newlines in scanf statements are FORBIDDEN. A scanf statement CANNOT have

anewline \n anywhere in its string literal. See above for an example.

12

21.

22.

23.

String literals MUST NOT have carriage returns embedded inside them. So, the following
statement is BAD BAD BAD:

printf ("This is a very long sentence so it needs
to be broken into pieces.\n");

The output text above MUST be broken into multiple print £ statements, so the following
statements are GOOD:

printf ("This is a very long sentence so it needs");
printf (" to be broken into pieces.\n");

Note that the resulting line of output text MUST be less than 80 characters long, preferably
no more than 72.

For PP#2, you are allowed to use ONLY the following kinds of programming constructs in
your C source file, but NO OTHER KINDS OF PROGRAMMING CONSTRUCTS:

e comments;

e preprocessor directives;

e main function header;

e block open and block close of the main function;
e variable declarations;

e printf statements;

e scanf statements.

Use of any other kind of programming constructs in your C source file might result in
SEVERE PENALTIES, UP TO 50% OFF BEFORE ANY OTHER DEDUCTIONS

ARE APPLIED, at our sole discretion.

Once you’ve created your script file, you are ABSOLUTELY FORBIDDEN to alter your
script file IN ANY WAY, EVER. (But, you may replace it with a completely new script file.)

EXTRA CREDIT
HELP SESSION BONUS EXTRA CREDIT

You can receive an extra credit bonus of as much as 5% of the total value of PP#2 as follows:

1.

2.

Attend at least one regularly scheduled CS1313 help session for at least 30 minutes, through
Wed Feb 12.

During the regularly scheduled help session that you attend, work on CS1313 assignments
(ideally PP#2, but any CS1313 assignment is acceptable). YOU CANNOT GET EXTRA
CREDIT IF YOU DON’T WORK ON CS1313 ASSIGNMENTS DURING THE HELP

SESSION.

VALUE OF THE HELP SESSION EXTRA CREDIT BONUS:

e for attending a regularly scheduled help session Mon Feb 3 - Tue Feb 4: 5% of the total

value of PP#2;

e for attending a regularly scheduled help session Mon Feb 10 - Wed Feb 12: 2.5% of the total

value of PP#2.

13

PP#2 CHECKLIST

— SSH window size: In the window that I use to access ssh.ou.edu (for example, PuTTY
in Microsoft Windows or the MacOS terminal window in MacOS), I always verify that my
window size is EXACTLY 80 columns wide by EXACTLY 40 rows high and that I've set
that window to forbid resizing (as described in the PP#1 specification, page 3, item I.1.a.xi-
xii).

— CS1313 subdirectory use: ALL of my PP#2 work isinmy CS1313 subdirectory, and this
will be true for ALL of my future CS1313 work (as described in the PP#1 specification,
page 10, item IV.4).

— Edit makefile: I'edited my makefile, using an editor in Linux, for example nano
(as described in the PP#2 specification, page 2, section II).

— PP#2 entry in makefile: In my makefile, I have added an entry for PP#2, for the
executable named census and its source file census.c (as described in the PP#2
specification, page 2, section II, before the first bullet list).

— PP#2 entry in makefile is the firstentry: In my makefile, the entry for PP#2 (census
and census.c)is the FIRST entry in my makefile (as described in the PP#2 specifi-
cation, page 2, section II).

— PP#2 entry in makefile followed by blank line: In my makefile, the entry for PP#2
(census and census.c) has a blank line between this new entry and the entry for PP#1
(as described in the PP#2 specification, page 2, section II).

— PP#2 entry in makefile first line has tab(s) instead of blank spaces: In my makefile,
in the entry for PP#2, for the executable named census and its source file census.c,
on the first line of this makefile entry, between the colon and the name of the source
file census.c, I used one or more tabs and no blank spaces (as described in the PP#2
specification, page 2, section II, first bullet list, 3rd bullet).

— PP#2 entry in makefile: second line starts with tab(s) instead of blank spaces: In my
makefile, in the entry for PP#2, for the executable named census and its source file
census.c, on the second line of this makefile entry, before the gcc command, I
used one or more tabs and no blank spaces (as described in the PP#2 specification, page 2,
section II, first bullet list, 4th bullet).

— Changed clean entry in makefile: In my makefile, I have changed the clean
entry, by adding the following for PP#2:
rm —f census
as the LAST rm command in the clean entry (as described in the PP#2 specification,
page 2, section II, between the bullet lists).

— Tab(s) instead of blank spaces in makefile clean entry: In my makefile, in the
clean entry, the rm command is preceded by one or more tabs but no blank spaces, and
has the executable name census (WITHOUT the .c) immediately after the —f (as
described in the PP#2 specification, page 2, section II, second bullet list, second bullet).

— Nothing after the colon on first line of makefile clean entry: In my makefile, in
the clean entry, the clean: line has NOTHING ELSE on the same line (as described
in the PP#2 specification, page 2, section II, second bullet list, last bullet).

14

[

[

CHECKLIST ITEMS FOR TYPING IN, COMPILING AND RUNNING
THE EXAMPLE PROGRAM FROM THE LECTURE SLIDES
Edit in Unix/Linux, NOT in Windows nor in MacOS: When editing my C source file, I edited

my C source file directly on ssh.ou.edu using a Unix text editor such as nano, NOT
in Microsoft Windows using a Microsoft Windows editor, NOR in MacOS using a MacOS
editor (as described in the PP#1 specification, page 14, item VI1.2).

Add example program to your makefile: I added an entry for the example program to

my makefile (as described in the PP#2 specification, page 3, item II1.4).
Add example program to your clean entry: I added the example program’s executable to

the clean entryinmy makefile (as described in the PP#2 specification, page 3, item
I11.5).
Type in by hand, NOT copy-and-paste: I typed in the example program from the lecture

slides, intead of copy-and-paste (as described in the PP#2 specification, page 3, item II1.8).
Indenting in original (uncommented) example C source file: I made sure that the original

(uncommented) example program from the lecture slides was correctly indented, in compli-
ance with PP#2 grading criterion #11 (as described in the PP#2 specification, page 3, item
I11.9).

No carriage returns in string literals in original (uncommented) example C source file: |

made sure that the original (uncommented) example program from the lecture slides had
no carriage returns inside string literals, in compliance with PP#2 grading criterion #21 (as
described in the PP#2 specification, page 3, item III.10).

Compile original (uncommented) C source file: I successfully compiled the original (uncom-

mented) example program from the lecture slides (as described in the PP#2 specification,
page 4, item I11.12).
Run original executable: I successfully ran the original (uncommented) example program’s

executable (as described in the PP#2 specification, page 4, item I11.14).
Add comments to the example C source file: I added comments throughout the entire ex-

ample C source file, using the PP#2 grading criteria #1(a)-(g), based on the comments in
my_number.c from PP#1 (as described in the PP#2 specification, page 4, item II1.17).
Compile commented C source file: I successfully compiled the commented example pro-

gram from the lecture slides (as described in the PP#2 specification, page 4, item III.19).
Run commented executable: I successfully ran the commented example program’s exe-

cutable (as described in the PP#2 specification, page 4, item II1.21).
Create script file for example program: I successfully create a script file for the commented

example program (as described in the PP#2 specification, page 4, item I11.23).

15

[

[

CHECKLIST ITEMS FOR CREATING AND TESTING YOUR OWN census.c
Edit in Unix/Linux, NOT in Windows nor in MacOS: When editing my C source file, I edited
my C source file directly on ssh.ou.edu using a Unix text editor such as nano, NOT
in Microsoft Windows using a Microsoft Windows editor, NOR in MacOS using a MacOS
editor (as described in the PP#1 specification, page 14, item VI.2).

Saving regularly while editing: When editing my C source file census.c (or any other
file), I saved my work regularly and repeatedly, every few minutes (as described in the PP#1
specification, page 15, item VL5).

Code writing: frequent saving, compiling and running to test: As I was writing my C source
code, I regularly saved my work, then I compiled using make, and, if the compile was
successful, then I ran the program to test it, again and again and again, after each small
change to the code (as described in the PP#1 specification, page 15, items VI.5 and VI.10,
and page 17, items VII.2-3 and VII.6, EXCEPT ignore the last sentence).

Line lengths in output of runs: In my runs of my C source file census.c, I verified that
every line of output text is less than 80 characters long, the width of my terminal window (as
described in this PP#2 specification, page 12, grading criterion #15).

Compile (make) your census: I'successfully compiled my C source file named census.c,
using the make census command (as described in the PP#1 specification, page 17, item
VIL2).

CHECKLIST ITEMS FOR SOURCE FILE CONTENTS
Comment block: At the very beginning of my C source file, I have a comment block, like the

one in my_number.c (as described in the PP#2 specification, page 9, grading criterion
#1a).
Preprocessor directive: Other than comments, my C source file starts with the preprocessor

directive

#include <stdio.h>

(as described in the PP#2 specification, page 5, section IV.A).

Main function header: Immediately after the preprocessor directive, my C source file has the

main function header

int main ()

(as described in the PP#2 specification, page 5, section IV.A).

Main function block open delimiter: Immediately after the main function header, my C

source file has the main function block open delimiter

{

(as described in the PP#2 specification, page 5, section IV.A).
Main function block close delimiter: At the end of the main function, my C source file has

the main function block close delimiter

}

(as described in the PP#2 specification, page 5, section IV.A).
Main function block delimiter comments: For my main function block delimiters, each is

followed, on the same line, by a comment with the name of the function, with a blank
space between the function name and each comment delimiter (as described in the PP#2
specification, page 10, grading criterion #2).

16

— Declaration section followed by execution section: Inside my main function is the decla-
ration section, followed by the execution section, in that order (as described in the PP#2
specification, page 5, section IV.A, and page 10, grading criterion #3).

— Declaration section comment: Immediately before my declaration section is a comment
labeling it as the declaration section, as in my_number.c (as described in the PP#2
specification, page 9, grading criterion #1b).

— Variable comments: My variable declarations are preceded by comments that describe the
nature and purpose of each variable, as in my_number.c (as described in the PP#2
specification, page 9, grading criterion #1c).

— Identifier structure: In my declaration section, my identifiers (in this case, variable names)
have the following structure: adjacent words are separated by underscores, and all letters
are lower case, except that proper nouns, if any, are capitalized (as described in the PP#2
specification, page 10, grading criterion #4).

— Favorite professor rule: In my declaration section, my identifiers (in this case, variable
names) all comply with the “favorite professor” rule (as described in the PP#2 specifica-
tion, page 10, grading criterion #5).

(— Variable data types: In my declaration section, my variable names have appropriate data
types (as described in the PP#2 specification, page 10, grading criterion #6).

— Declaration order: In my declaration section, my declaration statements have all float
declarations followed by all int declarations (as described in the PP#2 specification, page
5, section IV.B, and page 10, grading criterion #7).

— Declaration structure: In my declaration section, my declaration statements follow the struc-
ture rules (as described in the PP#2 specification, page 10, grading criterion #8).

— Declaration spacing: In my declaration section, my declaration statements follow the spacing
rules (as described in the PP#2 specification, page 10, grading criterion #9).

— Declaration statements with multiple variables: In my declaration section, any of my dec-
laration statements that declare multiple variables follow the multiple variable declaration
statement rules (as described in the PP#2 specification, page 11, grading criterion #10).

— Execution order: In my execution section, I have the following subsections, in the following
order: greeting subsection, input subsection, output subsection, with no mixing of subsec-
tions (as described in the PP#2 specification, page 6, section IV.C, and page 11, grading
criterion #12).

— Subsection comments: In my execution section, my subsections (greeting, input, output) are
preceded by comments, as in my _number.c (as described in the PP#2 specification, page
9, grading criterion #1d).

— Statement comments: In my execution section, EVERY SINGLE EXECUTABLE
STATEMENT is preceded by a helpful comment that describes what that statement does,
except that, if [have multiple printf statements in a row that output a single message,
then only the first of those print f statements in a row needs to be preceded by a comment
(as described in the PP#2 specification, page 9, grading criterion #le).

— Statement comment format: In my execution section, every comment preceding EVERY
SINGLE EXECUTABLE STATEMENT has the appropriate format (as described in the
PP#2 specification, page 9, grading criterion #1f).

17

[

[

[

No mixing of subsections: In my execution section, my greeting subsection has no inputs,
my input subsection has no outputs except prompts for inputs, and my output subsection has
no inputs — that is, my execution section does output, prompt input, prompt input, prompt
input, output output output, NOT output, prompt input output, prompt input output, prompt
input output, which would be WRONG (as described in the PP#2 specification, page 6,
section IV.C, and page 11, grading criterion #13).

Indentation: In both my declaration section and my execution section, indentation follows
the rules, specifically four spaces but NO TABS (as described in the PP#2 specification,
page 6, section IV.C, and page 9, grading criterion #11).

Line lengths in C source code: In both my declaration section and my execution section,
EVERY line of C source code text is less than 80 characters long — that is, less than the
width of the PuTTY or terminal window (as described in the PP#2 specification, page 12,
grading criterion #14).

Line lengths in output: In my execution section, EVERY line of C output text is less than 80
characters long — that is, less than the width of the PuTTY or terminal window (as described
in the PP#2 specification, page 12, grading criterion #15).

printf statements without placeholders: In my execution section, EVERY printf
statement that doesn’t have placeholders has the correct format (as described in the PP#2
specification, page 12, grading criterion #16).

printf statements with placeholders: In my execution section, EVERY printf state-

ment that does have placeholders has the correct format (as described in the PP#2 specifica-
tion, page 12, grading criterion #17).
Newlines in printf statements: In my execution section, EVERY printf statement

that does have a newline \n has that newline at the END of the string literal (as described
in the PP#2 specification, page 12, grading criterion #18).
scanf statements: In my execution section, EVERY scanf statement has the correct

format (as described in the PP#2 specification, page 12, grading criterion #19).
scanf statement ampersands: In my execution section, EVERY scanf statement has

an ampersand & before EVERY variable after the scanf statement’s string literal (as
described in the PP#2 specification, page 12, grading criterion #19).
NO newlines in scanf statements: In my execution section, NO scanf statement has a

newline \n anywhere in its string literal (as described in the PP#2 specification, page 12,
grading criterion #20).
String literals on a single line: In my execution section, EVERY printf statement has

its string literal on a single line, with NO carriage returns inside the string literals, but may
have the newline token \n inside the string literal (as described in the PP#2 specification,
page 13, grading criterion #21).

Outputs are complete sentences: In my execution section, all outputs, including the greeting,

all prompts, and all outputs of variable values, are complete English sentences (as described
in the PP#2 specification, page 6, section IV.C).

18

CHECKLIST ITEMS FOR SCRIPTING

— Runs before scripting: Before starting my scripting session, I thoroughly tested and de-
bugged my code by running it at least three times, with at least three different sets of appro-
priate inputs, the first run using the required first set of inputs, 12.25 cell phone calls, 8.25
photos and 12345-6789 (as described in the PP#2 specification, page 8, section VI).

— Start script session: I successfully started my scripting session, using the correct script
command, with the correct filename, which for PP#2 is pp2.txt (small-P small-P two
period small-T small-X small-T),
script pp2.txt
(as described in the PP#2 specification, page 8, section VII, paragraph 3, and the PP#1
specification, page 18, item VIIL.2).

— Script session_pwd: In my scripting session, I properly did the
pwd
command (as described in the PP#1 specification, page 18, item VIIIL.3).

— Script session 1s —1: In my scripting session, I properly did the
1s -1
command (small-L small-S space hyphen small-L, NOT small-L small-S space hyphen one,
which would be WRONG) (as described in the PP#1 specification, page 18, item VIIL.4).

— Script session cat makefile: Inmy scripting session, I properly did the
cat makefile
command (as described in the PP#1 specification, page 18, item VIILS).

— Script session cat census.c: In my scripting session, I properly did the
cat census.c
command (as described in the PP#1 specification, page 18, item VIIL.6, except with the C
source file name for PP#2).

— Script session make clean: In my scripting session, I properly did the
make clean
command (as described in the PP#1 specification, page 18, item VIIL.7).

— Script session make census: In my scripting session, I properly did the
make census
command (as described in the PP#1 specification, page 19, item VIIL.8, except with the C
source file name for PP#2).

— Script runs: In my scripting session, I did the correct number of runs, in the correct order,
with appropriate values (as described in the PP#2 specification, page 8, section VI).

— Script session termination: In my scripting session, after completing the appropriate com-
mands, I terminated the scripting session using
[ctrl D]

(as described in the PP#1 specification, page 19, item VIII.10).

— Script file cleanup with dos2unix: After my scripting session, I cleaned up my script file
pp2.txt using the
dos2unix pp2.txt
command (as described in the PP#1 specification, page 19, item VIII.12).

19

[

[

[

[

[

Script file unedited: After cleaning up my script file pp2.txt using the dos2unix
command, I NEVER edited or altered my script file pp2.txt (as described in the PP#1
specification, page 19, item VIII.13), though I did replace it with a new one if needed.
Script file proofread: I carefully proofread my script file pp2.txt (as described in the
PP#1 specification, page 20, item VIII.15).

CHECKLIST ITEMS FOR SUBMISSION

Summary essay: In my summary essay, I verified that I have included all of the required
sections and information, in the correct order (as described in the PP#1 specification, page
24, item X.1.b).

Summary essay references section: In my summary essay, I verified that I have included a
references section, even if [have no references (as described in the PP#1 specification, page
24, item X.1.b.vi).

Summary essay long enough: My summary essay is at least a half page single spaced/full
page double spaced (as described in the PP#1 specification, page 24, item X.1.b).
Proofreading: Before submitting, I thoroughly PROOFREAD every part of my submission:
my summary essay, my read_list script,and my census script.

Download to PC: I downloaded, to the PC that I wanted to upload to Canvas from, ALL OF
my EXAMPLE SCRIPT file pp2 _example.txt, my C SOURCE file

census.c AND my SCRIPT file pp2.txt BUT NOT my executable file nor any other
file (as described in the PP#2 specification, page 8, section VII, next-to-final paragraph).
Upload to Canvas: I uploaded, to the Canvas dropbox for PP#2, ALL OF my EXAMPLE
SCRIPT file pp2_example.txt, my C SOURCE file

census.c AND my SCRIPT file pp2.txt BUT NOT my executable file nor any other
file (as described in the PP#2 specification, page 8, section VII, final paragraph).

Upload verification: I verified that I uploaded the correct files — and only the correct files
— to the Canvas dropbox for PP#2.

Files NEVER deleted: For the entire semester, | NEVER will delete my C source files nor
my script files, even after this programming project is graded.

20

