
1Pointer Lesson 2
CS1313 Spring 2025

1. Pointer Lesson 2 Outline
2. Pass by Reference Bad Example
3. Pass by Reference Good Example
4. Is Pass by Reference Really by

Reference?
5. More on the Address Operator &
6. Pass by Reference via Pass by Copy?
7. How Pass by Reference Works in C
8. Pass by Reference in C
9. Pass by Reference Bad Example
10. Pass by Reference Good Example
11. More on Pointers
12. Pointer Variables
13. An Array Variable Is a Pointer

Pointer Lesson 2 Outline

2Pointer Lesson 2
CS1313 Spring 2025

% cat henrys_house_bad.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int dr_neemans_house);

 who(henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", &dr_neemans_house);
} /* who */
% gcc -o henrys_house_bad henrys_house_bad.c
% henrys_house_bad
How many people live in Dr Neeman's house?
4
134513624 people live in Henry's house.

Pass by Reference Bad Example

3Pointer Lesson 2
CS1313 Spring 2025

% cat henrys_house_good.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int* dr_neemans_house);

 who(&henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int* dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", dr_neemans_house);
} /* who */
% gcc -o henrys_house_good henrys_house_good.c
% henrys_house_good
How many people live in Dr Neeman's house?
4
4 people live in Henry's house.

Pass by Reference Good Example

4Pointer Lesson 2
CS1313 Spring 2025

In C, the only passing strategy is pass by copy.
To pass by reference, we have to piggyback on top of

pass by copy – because in C, everything is pass by copy.
So, the value that we have to pass by copy is

the address of the argument whose value we want to change,
which we achieve using the address operator &.

In other words, in C pass by reference is actually pass by copy:
you copy the address.

Is Pass by Reference Really by Reference?

5Pointer Lesson 2
CS1313 Spring 2025

% cat addr.c
#include <stdio.h>
int main ()
{ /* main */
 double dub = 5.0;
 float flo = 4.0;
 int in = 3;

 printf("dub = %f, &dub = %d\n", dub, &dub);
 printf("flo = %f, &flo = %d\n", flo, &flo);
 printf("in = %d, &in = %d\n", in, &in);
} /* main */
% gcc -o addr addr.c
% addr
dub = 5.000000, &dub = 536869704
flo = 4.000000, &flo = 536869696
in = 3, &in = 536869688

More on the Address Operator &

6Pointer Lesson 2
CS1313 Spring 2025

How does this help us in converting from pass by copy to
pass by reference?

Well, the value of the expression &dub is the address of dub.
If we pass a copy of the value of &dub, then we’re passing

the address of dub, so we’re passing dub by reference.

Huh?

Pass by Reference via Pass by Copy?

7Pointer Lesson 2
CS1313 Spring 2025

Okay, so we’ve decided that, if we pass the value of &dub,
then we’re passing dub by reference, because
we’re passing the address of dub.

What’s that all about?
Well, pass by reference means that the formal argument

refers to the actual argument, in the sense that
the formal argument has the same memory address as
the actual argument.

But pass by value means that the value of the actual argument
is copied into a new memory location, which is
the memory location of the formal argument.

How Pass by Reference Works in C

8Pointer Lesson 2
CS1313 Spring 2025

So let’s say we’re doing pass by value.
If the value that we pass is the address of the actual argument,
then the formal argument knows the memory location of
the actual argument.

In which case, if we can figure out how to dereference
the address contained in the formal argument –
to use it to get to the contents of that address –
then we’d have the address of the actual argument.

Which would be pass by reference.
So, what we need is a way to dereference an address.
Happily, C provides a dereference operator:

*
We use the dereference operator with pretty much the same

syntax that we use for the address operator:
*dub

Pass by Reference in C

9Pointer Lesson 2
CS1313 Spring 2025

% cat henrys_house_bad.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int dr_neemans_house);

 who(henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", &dr_neemans_house);
} /* who */
% gcc -o henrys_house_bad henrys_house_bad.c
% henrys_house_bad
How many people live in Dr Neeman's house?
4
134513624 people live in Henry's house.

Pass by Reference Bad Example

10Pointer Lesson 2
CS1313 Spring 2025

% cat henrys_house_good.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int* dr_neemans_house);

 who(&henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int* dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", dr_neemans_house);
} /* who */
% gcc -o henrys_house_good henrys_house_good.c
% henrys_house_good
How many people live in Dr Neeman's house?
4
4 people live in Henry's house.

Pass by Reference Good Example

11Pointer Lesson 2
CS1313 Spring 2025

So, a pointer is a variable whose value is a reference
(that is, an address of a location in memory).
It points to the location in memory.

Notice that, to assign a value to a pointer,
we apply the dereference operator * to the pointer:

*dr_neemans_house = 4;

Likewise, to use the value of the variable pointed to
by a pointer, we also apply the dereference operator *
to the pointer:

printf("%d people\n", *dr_neemans_house);

More on Pointers

12Pointer Lesson 2
CS1313 Spring 2025

% cat pointer.c
#include <stdio.h>
int main ()
{ /* main */
 int q; int *p;

 q = 5; p = &q;
 printf("q = %d, &q = %d\n", q, &q);
 printf("p = %d, *p = %d\n", p, *p);
} /* main */
% gcc -o pointer pointer.c
% pointer
q = 5, &q = 536869704
p = 536869704, *p = 5

Pointer Variables

13Pointer Lesson 2
CS1313 Spring 2025

In C, when we declare an array statically
float static_array[100];

we are setting up a block in memory,
but we’re doing it at compile time instead of at runtime.

Otherwise, an array is identical to a pointer. Specifically,
it’s a pointer to the block of memory that holds the array.

In fact, you can think of a statically allocated array as
a pointer constant:
its value (the address that it points to)
is set at compile time and cannot change at runtime.

An Array Variable Is a Pointer

	Pointer Lesson 2 Outline
	Pass by Reference Bad Example
	Pass by Reference Good Example
	Is Pass by Reference Really by Reference?
	More on the Address Operator &
	Pass by Reference via Pass by Copy?
	How Pass by Reference Works in C
	Pass by Reference in C
	Pass by Reference Bad Example
	Pass by Reference Good Example
	More on Pointers
	Pointer Variables
	An Array Variable Is a Pointer

