
1Pointer Lesson 1
CS1313 Spring 2025

15. The Address Operator &
16. Address Operator and scanf
17. Pass by Copy vs Pass by Reference #1
18. Pass by Copy vs Pass by Reference #2
19. Pass by Copy vs Pass by Reference #3
20. Pass by Reference Bad Example
21. Pass by Reference Good Example
22. Is Pass by Reference Really by

Reference?

1. Pointer Lesson 1 Outline
2. A Pointer Experiment
3. Point!
4. What is a Pointer?
5. NULL Pointer
6. Are Pointers Useful?
7. Pointers and Allocation
8. What Does malloc Do?
9. Pointers and Deallocation
10. Function Arguments
11. Pass by Copy Example
12. Pass by Copy or Pass by Reference
13. Pass by Reference
14. Pass by Reference Example

Pointer Lesson 1 Outline

2Pointer Lesson 1
CS1313 Spring 2025

1. Take out a sheet of scrap paper.
2. Tear it in half.
3. Tear it in half again.
4. On one of the quarter sheets, write legibly either:
 your full name (first and last), or
 an integer from 1 to 100.

5. Fold it in half.
6. Fold it in half again.
7. When the hat comes around the first time,

put your quarter sheet of paper into it.
8. When the hat comes around the second time,

take a random quarter sheet of paper out of it.
If you draw your own name, take out another one and
put your name back in.

A Pointer Experiment

Point!
9. Let’s pick someone.
10. Have them stand up and read their piece of paper,

then stay standing.
11. If they read a name, that person should also stand up, and

the person who read their name should point at them.
12. Let’s do several of those around the room.
13. So the people pointing at other people are “pointers,” and

the people who have a number are “values.”

Pointer Lesson 1
CS1313 Spring 2025 3

4Pointer Lesson 1
CS1313 Spring 2025

A pointer is a variable whose value is an address.
float* float_pointer;

This means:
Grab a bunch of bytes in memory,

name them float_pointer, and think of them as
storing an address, which is a special kind of int.

How many bytes?
On most platforms that you can buy today, a pointer is 8 bytes.

What is a Pointer?

5Pointer Lesson 1
CS1313 Spring 2025

A NULL pointer is a pointer that points to nowhere.
float* float_pointer = (float*)NULL;

This initialization statement means that
the float pointer named float_pointer
should initially point to nowhere.

Note that NULL is a C named constant. On most platforms,
its value is zero, but that doesn’t have to be the case.

NULL Pointer

6Pointer Lesson 1
CS1313 Spring 2025

float* list1_input_value =

 (float*)NULL;

list1_input_value

list1_input_value =
 (float*)malloc(sizeof(float) *
 number_of_elements);

list1_input_value

We’ve already seen a context where pointers are useful:
dynamic allocation of arrays.

A dynamically allocated array is really just a pointer to
the first byte of the first element of that array:

Are Pointers Useful?

7Pointer Lesson 1
CS1313 Spring 2025

When you allocate an array
list1_input_value =

 (float*)malloc(sizeof(float) *

 number_of_elements);

you’re setting a pointer variable’s value to:
the address of
the first byte of
the first element of
the array.

Pointers and Allocation

8Pointer Lesson 1
CS1313 Spring 2025

The malloc function finds a block of memory
that is otherwise not being used, claims it, and
returns its address (that is, a pointer to the block’s first byte).

list1_input_value =
 (float*)malloc(sizeof(float) *
 number_of_elements);

In this case, malloc finds an unclaimed block of
 sizeof(float) * number_of_elements

bytes, lays claim to that block, and returns its address to be
assigned to list1_input_value (which is a pointer,
which is to say its value is an address in main memory).

What Does malloc Do?

9Pointer Lesson 1
CS1313 Spring 2025

When you deallocate an array
 free(list1_input_value);
you’re releasing the block of memory that contains the array;

that is, you’re no longer claiming it.
But, that doesn’t change the value of the pointer variable,

because you didn’t assign the pointer variable a new value.
The pointer’s value is still the address of the block of
memory – which no longer is the array.

This is BAD BAD BAD!
Because, you might accidentally use that pointer later.
So, you have to assign NULL to (nullify) the pointer

IMMEDIATELY:
 list1_input_value = (float*)NULL;

Pointers and Deallocation

10Pointer Lesson 1
CS1313 Spring 2025

When you call a function in C and
you pass it some arguments, those arguments are
passed by copy.

This means that the formal arguments in the function definition
are actually copies of the actual arguments in the function call.
They live at different addresses than the originals.

Pass by copy is also known as:
 pass by value;
 call by copy;
 call by value.

Function Arguments

11Pointer Lesson 1
CS1313 Spring 2025

% cat my_bad_increment.c
#include <stdio.h>
int main ()
{ /* main */
 int x = 5;
 void my_increment(int var);

 printf("main: before call, x = %d\n", x);
 my_increment(x);
 printf("main: after call, x = %d\n", x);
} /* main */

void my_increment (int var)
{ /* my_increment */
 printf("my_increment: before inc, var = %d\n", var);
 var += 1;
 printf("my_increment: after inc, var = %d\n", var);
} /* my_increment */
% gcc -o my_bad_increment my_bad_increment.c
% my_bad_increment
main: before call, x = 5
my_increment: before inc, var = 5
my_increment: after inc, var = 6
main: after call, x = 5

Pass by Copy Example

12Pointer Lesson 1
CS1313 Spring 2025

Okay, so pass by copy means that changing the value of the copy
doesn’t change the value of the original.

Is there a way to pass an argument so that, in the function,
we can change the value of the formal argument, and
that’ll change the value of the actual argument in the call?

Yes: pass by reference.

Pass by Copy or Pass by Reference

13Pointer Lesson 1
CS1313 Spring 2025

Pass by reference means that, instead of passing a copy of
the actual argument, you pass the address of
the actual argument.

If we can pass the address, then we can
modify the value of the variable that lives at that address.

Pass by Reference

14Pointer Lesson 1
CS1313 Spring 2025

% cat my_good_increment.c
#include <stdio.h>
int main ()
{ /* main */
 int x = 5;
 void my_increment(int* varptr);

 printf("main: before call, x = %d\n", x);
 my_increment(&x);
 printf("main: after call, x = %d\n", x);
} /* main */

void my_increment (int* varptr)
{ /* my_increment */
 printf("my_increment: before inc, *varptr = %d\n", *varptr);
 *varptr += 1;
 printf("my_increment: after inc, *varptr = %d\n", *varptr);
} /* my_increment */
% gcc -o my_good_increment my_good_increment.c
% my_good_increment
main: before call, x = 5
my_increment: before inc, *varptr = 5
my_increment: after inc, *varptr = 6
main: after call, x = 6

Pass by Reference Example

15Pointer Lesson 1
CS1313 Spring 2025

The address operator & is an operator that means
“the address of:”

% cat addr_op.c
#include <stdio.h>
int main ()
{ /* main */
 int* ip = (int*)NULL;
 int i;

 ip = &i;
 i = 5;
 printf("i=%d, *ip=%d\n", i, *ip);
 *ip = 6;
 printf("i=%d, *ip=%d\n", i, *ip);
} /* main */
% gcc –o addr_op addr_op.c
% addr_op
i=5, *ip=5
i=6, *ip=6

The Address Operator &

16Pointer Lesson 1
CS1313 Spring 2025

We already know a case where we use the address operator:
scanf.

When we call scanf, we want to change the value of
the argument(s) at the end of the call; for example:

 scanf("%d", &number_of_elements);
We want to modify the value of number_of_elements.
So we have to pass the address of this variable,

so that scanf can change its value.

Address Operator and scanf

17Pointer Lesson 1
CS1313 Spring 2025

In C, when an argument is passed to a function,
the program grabs a new location in memory and
copies the value of the actual argument into this new location,
which is then used as the formal argument.

This approach is known by several names:
 pass by value
 call by value
 pass by copy
 call by copy
By contrast, if we use pointers – and possibly

the address operator & in the actual argument(s) –
then this accomplishes the equivalent of pass by reference
(even though the pointer itself is passed by copy).

Pass by Copy vs Pass by Reference #1

18Pointer Lesson 1
CS1313 Spring 2025

We can visualize pass by reference
by imagining Henry’s house, which has the address

123 Any Street
We can refer to Henry’s house this way:

Henry’s house
But we can also refer to Henry’s house this way:

Dr. Neeman’s house
So, “Henry’s house” and “Dr. Neeman’s house”

are two different names for the same location;
they are aliases.

Pass by Copy vs Pass by Reference #2

19Pointer Lesson 1
CS1313 Spring 2025

We can refer to Henry’s house this way:
Henry’s house

But we can also refer to Henry’s house this way:
Dr. Neeman’s house

So, “Henry’s house” and “Dr. Neeman’s house” are
aliases: two different names for the same location.

With pass by reference, when we call a function,
each actual argument and its corresponding formal argument
are aliases of the same location in memory.

Pass by Copy vs Pass by Reference #3

20Pointer Lesson 1
CS1313 Spring 2025

% cat henrys_house_bad.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int dr_neemans_house);

 who(henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", &dr_neemans_house);
} /* who */
% gcc -o henrys_house_bad henrys_house_bad.c
% henrys_house_bad
How many people live in Dr Neeman's house?
4
134513624 people live in Henry's house.

Pass by Reference Bad Example

21Pointer Lesson 1
CS1313 Spring 2025

% cat henrys_house_good.c
#include <stdio.h>
int main ()
{ /* main */
 int henrys_house;
 void who(int* dr_neemans_house);

 who(&henrys_house);
 printf("%d people live in Henry’s house.\n",
 henrys_house);
} /* main */

void who (int* dr_neemans_house)
{ /* who */
 printf("How many people live in Dr Neeman’s house?\n");
 scanf("%d", dr_neemans_house);
} /* who */
% gcc -o henrys_house_good henrys_house_good.c
% henrys_house_good
How many people live in Dr Neeman's house?
4
4 people live in Henry's house.

Pass by Reference Good Example

22Pointer Lesson 1
CS1313 Spring 2025

In C, the only passing option is pass by copy.
To pass by reference, we have to

piggyback on top of pass by copy –
because in C, everything is pass by copy.

So, the value that we have to pass by copy is
the address of the argument we want to be able to change,
which we achieve using the address operator &.

In other words, in C, pass by reference is actually pass by copy:
you pass a copy of the address of
the variable that you want the function to be able to change.

Is Pass by Reference Really by Reference?

	Pointer Lesson 1 Outline
	A Pointer Experiment
	Point!
	What is a Pointer?
	NULL Pointer
	Are Pointers Useful?
	Pointers and Allocation
	What Does malloc Do?
	Pointers and Deallocation
	Function Arguments
	Pass by Copy Example
	Pass by Copy or Pass by Reference
	Pass by Reference
	Pass by Reference Example
	The Address Operator &
	Address Operator and scanf
	Pass by Copy vs Pass by Reference #1
	Pass by Copy vs Pass by Reference #2
	Pass by Copy vs Pass by Reference #3
	Pass by Reference Bad Example
	Pass by Reference Good Example
	Is Pass by Reference Really by Reference?

