
1Numeric Data Types Lesson
CS1313 Spring 2025

22. Declaring float Variables
23. float Variable Size
24. float Declaration Example Part 1
25. float Declaration Example Part 2
26. The Same Source Code without Comments
27. Scientific Notation
28. Floating Point Numbers
29. float Approximation #1
30. float Approximation #2
31. float Approximation #3
32. float Approximation Example Program
33. Floating Point Approximation Examples
34. float Literal Constants
35. float Literal Constant Examples
36. float Literal Constants Usage
37. float Lit Constant Usage: Good & Bad
38. float Named Constants Example Program #1
39. float Named Constants Example Program #2
40. Why Have Both Reals & Integers? #1
41. Why Have Both Reals & Integers? #2
42. Programming Exercise

1. Numeric Data Types Outline
2. Data Types
3. Integers in Mathematics
4. Integers in Computing
5. Integers A.K.A. Fixed Point Numbers
6. Declaring int Variables
7. int Data Don’t Have to Be 4 Bytes Long
8. int Declaration Example Program Part 1
9. int Declaration Example Program Part 2
10. The Same Source Code without Comments
11. int Literal Constants
12. int Literal Constants Usage
13. int Literal Constants Usage: Good & Bad
14. int Named Constants Example #1
15. int Named Constants Example #2
16. Real Numbers in Mathematics
17. Reals: Digits to the Right of the Decimal
18. A Fun Rational Number
19. Integers vs Reals in Mathematics
20. Representing Real Numbers in a Computer
21. float Literal Constants

Numeric Data Types Outline

2Numeric Data Types Lesson
CS1313 Spring 2025

A data type is (surprise!) a type of data:
 Numeric

 int: integer
 float: floating point (also known as real)

 Non-numeric
 char: character

Note that this list of data types ISN’T exhaustive –
there are many more data types (and you can define your own).

#include <stdio.h>
int main ()
{ /* main */
 float standard_deviation, relative_humidity;
 int count, number_of_silly_people;
 char middle_initial, hometown[30];
} /* main */

Data Types

3Numeric Data Types Lesson
CS1313 Spring 2025

Mathematically, an integer is:
any number (positive, negative or zero)
that has nothing but zeros to the right of its decimal point:

 -3984.00000000...
 0.00000000...
23085.00000000...

Another way to think of integers is as
 the counting numbers, and
 1, 2, 3, 4, 5, 6, ...
 their negatives (additive inverses), and
 -1, -2, -3, -4, -5, -6, …
 zero.
In mathematics, the range on integers is infinite in both directions:

-∞ to +∞

Integers in Mathematics

4Numeric Data Types Lesson
CS1313 Spring 2025

-3984
0

23085

An integer in computing has mostly
the same mathematical properties as an integer in mathematics.

An integer in computing has a finite range (minimum, maximum).
An integer in computing also has a particular way of being

represented in memory (which we’ll see later in the course,
time permitting) and a particular way of being operated on.

In C (and in most programming languages),
int literal constants are expressed without a decimal point:

Integers in Computing

5Numeric Data Types Lesson
CS1313 Spring 2025

invisible decimal point
in a “fixed”
(unchanging) place

-3984
0

23085

Integers are also known as fixed point numbers, because
they have an invisible decimal point in
a fixed (unchanging) position.

Specifically, every integer’s invisible decimal point is
to the right of the rightmost digit (the “ones” digit):

Integers A.K.A. Fixed Point Numbers

6Numeric Data Types Lesson
CS1313 Spring 2025

For example, on x86-based Linux PCs such as ssh.ou.edu,
using the gcc compiler from gnu.org (the compiler that
we’re using in this course), the size of an int is 4 bytes.

x:

This declaration tells the compiler to grab a group of bytes,
name them x, and think of them as storing an int.

How many bytes?
That depends on the platform and the compiler, but these days

the typical answer is that an int takes 4 bytes (32 bits)
in most cases:

int x;

Declaring int Variables

7Numeric Data Types Lesson
CS1313 Spring 2025

On some platforms (combination of hardware family and
operating system), on some compilers, all ints are 4 bytes.

On other platforms, the default int size is 4 bytes, but
the size of an int can be changed by using a compiler option.

Notice that different compilers for the same language can have
different names, different defaults and different options.

While there are many common features,
compiler vendors are under no compulsion to follow them.

int Data Don’t Have to Be 4 Bytes Long

8Numeric Data Types Lesson
CS1313 Spring 2025

% cat assign.c
/*

 *** Program: assign ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012 Fridays 1:00pm ***
 *** Description: Declares, assigns and ***
 *** outputs a variable. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*
 *
 **
 * Declaration section *
 **
 *

 * Local variables *

 *
 * height_in_cm: my height in cm
 */
 int height_in_cm;

int Declaration Example Program Part 1

9Numeric Data Types Lesson
CS1313 Spring 2025

/*

 * Execution section *

 * Assign the integer value 160 to height_in_cm.
 */
 height_in_cm = 160;
 /*
 * Print height_in_cm to standard output.
 */
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o assign assign.c
% assign
My height is 160 cm.

int Declaration Example Program Part 2

10Numeric Data Types Lesson
CS1313 Spring 2025

% cat assign.c
#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n", height_in_cm);
} /* main */
% gcc -o assign assign.c
% assign
My height is 160 cm.

The Same Source Code without Comments

11Numeric Data Types Lesson
CS1313 Spring 2025

An int literal constant is any sequence of digits,
possibly preceded by an optional sign:

CORRECT: 0 -345 768 +12345

INCORRECT:
 1,234,567
 INCORRECT: No commas allowed.
 12.0
 INCORRECT: No decimal point allowed.
 --4 ++3
 INCORRECT: A maximum of one sign per int literal constant.
 5- 7+
 INCORRECT: The sign must come before the digit(s), not after.

int Literal Constants

12Numeric Data Types Lesson
CS1313 Spring 2025

We can use int literal constants in several ways:
 In declaring and initializing a named constant:
 const int w = 0;
 /* 0 is an int literal constant */
 In initializing a variable (within a declaration):
 int x = -19;
 /* -19 is an int literal constant */
 In an assignment:
 y = +7;
 /* +7 is an int literal constant */
 In an expression (which we’ll learn more about):
 z = y + 9;
 /* 9 is an int literal constant */

int Literal Constants Usage

13Numeric Data Types Lesson
CS1313 Spring 2025

We can use int literal constants in several ways:
 In declaring and initializing a named constant:
 const int w = 0;
 /* This is GOOD. */
 In initializing a variable (within a declaration):
 int x = -19;
 /* This is GOOD. */
 In an assignment:
 y = +7;
 /* This is BAD BAD BAD! */
 In an expression (which we’ll learn more about):
 z = y + 9;
 /* This is BAD BAD BAD! */

int Literal Constants Usage: Good & Bad

14Numeric Data Types Lesson
CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int number_of_people_to_tango = 2;
 const int inches_per_foot = 12;
 const int degrees_in_a_circle = 360;

 printf("It takes %d to tango.\n",
 number_of_people_to_tango);
 printf("\n");
 printf("There are %d inches in a foot.\n",
 inches_per_foot);
 printf("\n");
 printf("There are %d degrees in a circle.\n",
 degrees_in_a_circle);
} /* main */

int Named Constants Example #1

15Numeric Data Types Lesson
CS1313 Spring 2025

% gcc -o intconsts intconsts.c
% intconsts
It takes 2 to tango.

There are 12 inches in a foot.

There are 360 degrees in a circle.

ASIDE: Notice that you can output a blank line by outputting
a string literal containing only the newline character \n.

int Named Constants Example #2

16Numeric Data Types Lesson
CS1313 Spring 2025

Mathematically, a real number is
a number (positive, negative or zero) with
any sequence of digits on either side of the decimal point:

 -3984.75
 0.1111111...
 3.1415926...
In mathematics, the range on real numbers is

infinite in both directions:
-∞ to +∞

Real Numbers in Mathematics

17Numeric Data Types Lesson
CS1313 Spring 2025

In mathematics, the string of digits
to the right of the decimal point can be either:

 terminating (a finite number of nonzero digits,
maybe even NO nonzero digits), OR

 repeating (a finite sequence of digits repeated infinitely), OR
 non-repeating.
In mathematics, there are infinitely many real numbers.
In fact, there are infinitely many real numbers

between any two real numbers.
For example, there are infinitely many real numbers between

0 and 0.00000000000000001.

Reals: Digits to the Right of the Decimal

18
Numeric Data Types Lesson

CS1313 Spring 2025

1 / 998,001 has, as its repeating decimal expansion,
every 3-digit integer from 000 to 999, in order, EXCEPT 998:

https://img-9gag-fun.9cache.com/photo/aK69rpN_700bwp.webp

A Fun Rational Number

https://img-9gag-fun.9cache.com/photo/aK69rpN_700bwp.webp

19Numeric Data Types Lesson
CS1313 Spring 2025

Notice that, in mathematics, all integers are real numbers,
but not all real numbers are integers.

In particular, mathematically, every integer is a real number,
because it has a finite number of nonzero digits
to the right of the decimal point.

Specifically, an integer has NO nonzero digits
to the right of the decimal point.

Integers vs Reals in Mathematics

20Numeric Data Types Lesson
CS1313 Spring 2025

In a computer, a real value is stored in a finite number of bits
(typically 32 or 64 bits).

But there are infinitely many real numbers, and in fact there are
infinitely many real numbers between any two real numbers.

So a computer’s representation of real numbers
can only approximate most mathematical real numbers.

This is because only finitely many different values
can be stored in a finite number of bits.

For example, 32 bits can have only 232 possible different values.
A real value in computing has a finite range (minimum, maximum).
Like integers, real numbers have particular ways

of being represented in memory and of being operated on.

Representing Real Numbers in a Computer

21Numeric Data Types Lesson
CS1313 Spring 2025

In C (and in most programming languages),
float literal constants often are expressed with a decimal point:

 -3984.75
 0.0
 23085.1235
Recall that, in mathematics, all integers are reals,

but not all reals are integers.
Similarly, in most programming languages,

some real numbers are mathematical integers (for example, 0.0),
even though they are represented in memory as reals.

In computing, reals are often called floating point numbers.
We’ll see why soon.

float Literal Constants

22Numeric Data Types Lesson
CS1313 Spring 2025

x:

x:

float x;
This declaration tells the compiler to grab a group of bytes,

name them x, and think of them as storing a float,
which is to say a real number.

How many bytes?
That depends on the platform and the compiler, but these days

the typical answer is that real numbers in most cases take
4 bytes (32 bits) or 8 bytes (64 bits):

Declaring float Variables

23Numeric Data Types Lesson
CS1313 Spring 2025

For example, on x86-based Linux PCs such as ssh.ou.edu,
using the gcc compiler from gnu.org, which we’re using
in this course, the default size of a float is 4 bytes (32 bits).

float Variable Size

24Numeric Data Types Lesson
CS1313 Spring 2025

% cat realassign.c
/*

 *** Program: realassign ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012 Fridays 1:00pm ***
 *** Description: Declares, assigns and ***
 *** outputs a real variable. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*
 *
 **
 * Declaration section *
 **
 *

 * Local variables *

 *
 * height_in_m: my height in m
 */
 float height_in_m;

float Declaration Example Part 1

25Numeric Data Types Lesson
CS1313 Spring 2025

/*

 * Execution section *

 * Assign the real value 1.6 to height_in_m.
 */
 height_in_m = 1.6;
 /*
 * Print height_in_m to standard output.
 */
 printf("My height is %f m.\n", height_in_m);
} /* main */
% gcc -o realassign realassign.c
% realassign
My height is 1.600000 m.

float Declaration Example Part 2

26Numeric Data Types Lesson
CS1313 Spring 2025

% cat realassign.c
#include <stdio.h>

int main ()
{ /* main */
 float height_in_m;

 height_in_m = 1.6;
 printf("My height is %f m.\n", height_in_m);
} /* main */
% gcc -o realassign realassign.c
% realassign
My height is 1.600000 m.

The Same Source Code without Comments

27Numeric Data Types Lesson
CS1313 Spring 2025

In technical situations, we often encounter scientific notation,
which is a way of writing numbers that are either
very very big or very very small:

 6,300,000,000,000,000 = 6.3 × 1015

 0.0000000000271 = 2.71 × 10−11

In C, we can express such numbers in a similar way:
 6,300,000,000,000,000 = 6.3e+15
 0.0000000000271 = 2.71e-11
Here, the e, which is short for “exponent,”

indicates that the sequence of characters to the right of the e
– an optional sign followed by one or more digits –
is the power of 10 that the number to the left of the e
should be multiplied by.

Scientific Notation

28Numeric Data Types Lesson
CS1313 Spring 2025

When we express a real number in scientific notation,
the decimal point is immediately to the right of
the leftmost non-zero digit.

So, the decimal point doesn’t have to be
to the right of the “ones” digit; instead, it can be after any digit.
It doesn’t have a fixed location, so we say that it floats.

So, we sometimes call real numbers floating point numbers.
We recall that, similarly, integers are sometimes called

fixed point numbers, because they have
an implicit decimal point that is in a fixed location,
always to the right of the “ones” digit (that is, the rightmost digit),
with implied zeros to the right of the implied decimal point:

6, 300, 000, 000, 000, 000 = 6, 300, 000, 000, 000, 000.0000 . . .

Floating Point Numbers

29Numeric Data Types Lesson
CS1313 Spring 2025

In C (and in most other programming languages),
real numbers are represented by a finite number of bits.

For example, on Linux PCs like ssh.ou.edu,
the default size of a float is 32 bits (4 bytes).

We know that 32 bits can store
 232 = 22 × 230 = 22 × 210 × 210 × 210
 ~ 4 × 103 × 103 × 103 =
roughly 4,000,000,000 possible values.
That’s a lot of possibilities.

But: There are infinitely many (mathematically) real numbers,
and in fact infinitely many real numbers
between any two real numbers.

float Approximation #1

30Numeric Data Types Lesson
CS1313 Spring 2025

So, no matter how many bits we use to represent a real number,
we won’t be able to exactly represent most real numbers,
because we have an infinite set of real numbers
to be represented in a finite number of bits.

2 3 4 5 6 7 8 9
2.9 3.8 4.7 5.6 6.5 7.4 8.3 9.2
2.09 3.08 4.07 5.06 6.05 7.04 8.03 9.02
2.009 3.008 4.007 5.006 6.005 7.004 8.003 9.002
2.0009 3.0008 4.0007 5.0006 6.0005 7.0004 8.0003 9.0002

…

For example, between 1 and 10 we have:

float Approximation #2

31Numeric Data Types Lesson
CS1313 Spring 2025

No matter how many bits we use to represent a real number,
we won’t be able to exactly represent most real numbers,
because we have an infinite set of real numbers
to be represented in a finite number of bits.

For example:
if we can exactly represent 0.125 but not
0.125000000000000000000000000000001,
then we have to use 0.125 to approximate
0.125000000000000000000000000000001.

float Approximation #3

32Numeric Data Types Lesson
CS1313 Spring 2025

% cat real_approx.c
#include <stdio.h>

int main ()
{ /* main */
 float input_value;

 printf("What real value would you like stored?\n");
 scanf("%f", &input_value);
 printf("That real value is stored as %f.\n",
 input_value);
} /* main */
% gcc -o real_approx real_approx.c
% real_approx
What real value would you like stored?
0.125000000000000000000000000000001
That real value is stored as 0.125000.

float Approximation Example Program

Floating Point Approximation Examples
1.25 = 20 + 2-2

0.1 ~
2-4 + 2-5 + 2-8 + 2-9 + 2-12 + 2-13 + 2-16 + 2-17 + 2-20 + 2-21 +
2-24 + 2-25 + 2-28 + 2-29 + 2-32 + 2-33 + 2-36 + 2-37 + 2-40 + 2-41 +
2-44 + 2-45 + 2-48 + 2-49 + 2-52 + 2-53 + 2-55

http://bartaz.github.io/ieee754-visualization/

Numeric Data Types Lesson
CS1313 Spring 2025 33

http://bartaz.github.io/ieee754-visualization/

34Numeric Data Types Lesson
CS1313 Spring 2025

A float literal constant is:
 an optional sign, followed by
 a sequence of one or more digits (which is optional if there

are digits to the right of the decimal point), followed by
 a decimal point (which is optional if there is an exponent),

followed by
 an optional sequence of one or more digits to the right of

the decimal point (if there is one), followed by
 an optional exponent string, which consists of an e,

an optional sign, and a sequence of one or more digits.
You can tell that a numeric literal constant is

a float literal constant because it has
either a decimal point, or an e, or both.

float Literal Constants

35Numeric Data Types Lesson
CS1313 Spring 2025

0.0

-345.3847

7.68e+05

+12345.434e-13

125.e1

1e1

float Literal Constant Examples

36Numeric Data Types Lesson
CS1313 Spring 2025

We can use float literal constants in several ways:
 In declaring and initializing a named constant:
 const float w = 0.0;
 /* 0.0 is a float literal constant */
 In initializing a variable (within a declaration):
 float x = -1e-05;
 /* -1e-05 is a float literal constant */
 In an assignment:
 y = +7.24690120;
 /* +7.24690120 is a float literal
 * constant */
 In an expression (which we’ll learn more about):
 z = y + 125e3;
 /* 125e3 is a float literal constant */

float Literal Constants Usage

37Numeric Data Types Lesson
CS1313 Spring 2025

We can use float literal constants in several ways:
 In declaring and initializing a named constant:
 const float w = 0.0;
 /* This is GOOD. */
 In initializing a variable (within a declaration):
 float x = -1e-05;
 /* This is GOOD. */
 In an assignment:
 y = +7.24690120;
 /* This is BAD BAD BAD! */
 In an expression (which we’ll learn more about):
 z = y + 125e3;
 /* This is BAD BAD BAD! */

float Lit Constant Usage: Good & Bad

38Numeric Data Types Lesson
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const float pi = 3.1415926;
 const float radians_in_a_semicircle = pi;
 const float number_of_days_in_a_solar_year =
 365.242190;
 const float US_inflation_percent_in_1998 = 1.6;

 printf("pi = %f\n", pi);
 printf("\n");
 printf("There are %f radians in a semicircle.\n",
 radians_in_a_semicircle);
 printf("\n");
 printf("There are %f days in a solar year.\n",
 number_of_days_in_a_solar_year);
 printf("\n");
 printf("The US inflation rate in 1998 was %f%%.\n",
 US_inflation_percent_in_1998);
} /* main */

float Named Constants Example Program #1

39Numeric Data Types Lesson
CS1313 Spring 2025

% gcc -o real_constants real_constants.c
% real_constants
pi = 3.141593

There are 3.141593 radians in a semicircle.

There are 365.242188 days in a solar year.

The US inflation rate in 1998 was 1.600000%.

Again, notice that you can output a blank line by printing
a string literal containing only the newline character \n.

Reference:
http://scienceworld.wolfram.com/astronomy/LeapYear.html

float Named Constants Example Program #2

http://scienceworld.wolfram.com/astronomy/LeapYear.html

40Numeric Data Types Lesson
CS1313 Spring 2025

1. Precision: ints are exact, floats are approximate.
2. Appropriateness: For some tasks, ints fit the properties

of the data better. For example:
a. counting the number of students in a class;
b. array indexing (which we’ll see later).

3. Readability: When we declare a variable to be an int,
we make it obvious to anyone reading our program that
the variable will contain only certain values (specifically,
only integer values).

Why Have Both Reals & Integers? #1

41Numeric Data Types Lesson
CS1313 Spring 2025

4. Enforcement: When we declare a variable to be an int,
no one can put a non-int into it.

5. History: For a long time, operations on int data
were much quicker than operations on float data,
so anything that you could do with ints, you would.
Nowadays, operations on floats can be as fast as
(or faster than!) operations on ints, so
speed is no longer an issue.

Why Have Both Reals & Integers? #2

Programming Exercise
Write a program that inputs, and then outputs,
the user’s number of first cousins and height in meters.
The program should do the following:
1. greet the user;
2. prompt the user to input their number of cousins;
3. input their number of cousins;
4. prompt the user to input their height in meters;
5. input their height in meters;
6. output their number of cousins, in a full sentence;
7. output their height in meters, in a full sentence.
Be sure to use appropriate data types and placeholders.

Numeric Data Types Lesson
CS1313 Spring 2025 42

	Numeric Data Types Outline
	Data Types
	Integers in Mathematics
	Integers in Computing
	Integers A.K.A. Fixed Point Numbers
	Declaring int Variables
	int Data Don’t Have to Be 4 Bytes Long
	int Declaration Example Program Part 1
	int Declaration Example Program Part 2
	The Same Source Code without Comments
	int Literal Constants
	int Literal Constants Usage
	int Literal Constants Usage: Good & Bad
	int Named Constants Example #1
	int Named Constants Example #2
	Real Numbers in Mathematics
	Reals: Digits to the Right of the Decimal
	A Fun Rational Number
	Integers vs Reals in Mathematics
	Representing Real Numbers in a Computer
	float Literal Constants
	Declaring float Variables
	float Variable Size
	float Declaration Example Part 1
	float Declaration Example Part 2
	The Same Source Code without Comments
	Scientific Notation
	Floating Point Numbers
	float Approximation #1
	float Approximation #2
	float Approximation #3
	float Approximation Example Program
	Floating Point Approximation Examples
	float Literal Constants
	float Literal Constant Examples
	float Literal Constants Usage
	float Lit Constant Usage: Good & Bad
	float Named Constants Example Program #1
	float Named Constants Example Program #2
	Why Have Both Reals & Integers? #1
	Why Have Both Reals & Integers? #2
	Programming Exercise

