
1Idiotproofing Lesson
CS1313 Spring 2025

15. exit Example's Flowchart
16. A New File to #include
17. exit Statement Inside an

if Block #1
18. exit Statement Inside an

if Block #2
19. exit Statement Inside an

if Block #3
20. exit Statement Inside an

if Block #4
21. Idiotproofing Example's

Flowchart

1. Idiotproofing Outline
2. Idiotproofing
3. Idiotproofing Quotes
4. Bear Spray NOT Like Bug Spray
5. An Idiotproof Website
6. Idiotproofing Example #1
7. Idiotproofing Example #2
8. Why We Idiotproof
9. The exit Statement #1
10. The exit Statement #2
11. The exit Statement #3
12. The exit Statement #4

Idiotproofing Outline

2Idiotproofing Lesson
CS1313 Spring 2025

Idiotproofing means ensuring that a user's input is valid.

Idiotproofing

3Idiotproofing Lesson
CS1313 Spring 2025

"Idiotproofing is difficult because idiots are so clever.”
"You can't make anything idiot proof because idiots are so ingenious.”

― Ron Burns
"Idiotproofing causes evolutionary selection of more ingenious idiots.”
"Programming today is a race between software engineers striving to build bigger

and better idiot-proof programs, and the Universe trying to produce bigger and
better idiots. So far, the Universe is winning.” – Rich Cook

"It doesn't really matter what effort you put into idiot-proofing a product or
procedure. They will always build a better idiot.”

"Idiot-proofing assumes a finite number of idiots.”
"Campaigns to bearproof all garbage containers in wild areas have been difficult

because, as one biologist put it, ‘There is a considerable overlap between the
intelligence levels of the smartest bears and the dumbest tourists'.”

http://www.goodreads.com/quotes/tag/idiots

http://scienceblogs.com/goodmath/2008/04/the_real_murphys_law.php

http://c2.com/cgi/wiki?IdiotProofProcess

Idiotproofing Quotes

http://www.goodreads.com/quotes/tag/idiots
http://scienceblogs.com/goodmath/2008/04/the_real_murphys_law.php
http://c2.com/cgi/wiki?IdiotProofProcess

Bear Spray NOT Like Bug Spray

Idiotproofing Lesson
CS1313 Spring 2025 4

An Idiotproof Website
http://www.idiotproofwebsite.com/

Idiotproofing Lesson
CS1313 Spring 2025 5

http://www.idiotproofwebsite.com/

6Idiotproofing Lesson
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>
int main ()
{ /* main */
 const int minimum_volume = 0;
 const int program_success_code = 0;
 const int program_failure_code = -1;
 float volume_in_fluid_ounces;

 printf("What is the volume in fluid ounces?\n");
 scanf("%f", &volume_in_fluid_ounces);
 if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code); /* <--- NOTICE! */
 } /* if (volume_in_fluid_ounces < ...) */
 /*
 * ASSERT: By the time the program gets to here,
 * the volume in fluid ounces must be valid.
 */
 printf("The volume in fluid ounces is valid.\n");
 return program_success_code;
} /* main */

Idiotproofing Example #1

7Idiotproofing Lesson
CS1313 Spring 2025

% gcc -o conversions_idiot conversions_idiot.c
% conversions_idiot
What is the volume in fluid ounces?
-1000
ERROR: you can't have a negative volume -1000.0000!
% conversions_idiot
What is the volume in fluid ounces?
1000
The volume in fluid ounces is valid.

Idiotproofing Example #2

8Idiotproofing Lesson
CS1313 Spring 2025

 Idiotproofing ensures that input data are valid,
which means that, if our program is otherwise correct,
then the output will be valid as well.

 Idiotproofing allows us to assert certain properties of the data.
For example, in the conversions program,
properly idiotproofed input data allow us to assert that,
in the calculation section, the volume in fluid ounces is valid.
So, our calculations can assume this fact,
which sometimes can be more convenient.

Why We Idiotproof

9Idiotproofing Lesson
CS1313 Spring 2025

NOTICE!
% cat exitexample.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int program_failure_code = -1;

 printf("This statement will be always be executed.\n");
 exit(program_failure_code);
 printf("This statement will be never be executed.\n");
} /* main */
% gcc -o exitexample exitexample.c
% exitexample
This statement will be always be executed.

The exit statement terminates execution of
a given run of a program.

The exit Statement #1

10Idiotproofing Lesson
CS1313 Spring 2025

NOTICE!
% cat exitexample.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int program_failure_code = -1;

 printf("This statement will be always be executed.\n");
 exit(program_failure_code);
 printf("This statement will be never be executed.\n");
} /* main */
% gcc -o exitexample exitexample.c
% exitexample
This statement will be always be executed.

The program terminates in a controlled, graceful way –
that is, it doesn't actually crash –
without executing the remaining executable statements.

The exit Statement #2

11Idiotproofing Lesson
CS1313 Spring 2025

NOTICE!
% cat exitexample.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int program_failure_code = -1;

 printf("This statement will be always be executed.\n");
 exit(program_failure_code);
 printf("This statement will be never be executed.\n");
} /* main */
% gcc -o exitexample exitexample.c
% exitexample
This statement will be always be executed.

Notice that the exit statement takes an int argument.
This argument represents the value that will be returned by
the program to the operating system (for example, Linux).

By convention, returning 0 from a program to the OS means
that the program completed successfully, so if the program is
exiting prematurely, then you should return a non-zero value.

The exit Statement #3

12Idiotproofing Lesson
CS1313 Spring 2025

NOTICE!
% cat exitexample.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int program_failure_code = -1;

 printf("This statement will be always be executed.\n");
 exit(program_failure_code);
 printf("This statement will be never be executed.\n");
} /* main */
% gcc -o exitexample exitexample.c
% exitexample
This statement will be always be executed.

Jargon: In the context of running a program,
all of the following terms are used to mean the same thing:
exit, stop, halt, terminate, abort.

The exit Statement #4

13Idiotproofing Lesson
CS1313 Spring 2025

Notice that the symbol for an exit
is also an oval.

Actual FlowchartApparent Flowchart

printf("This statement will be always be executed.\n");
exit(program_failure_code);
printf("This statement will be never be executed.\n");

exit Example's Flowchart

14Idiotproofing Lesson
CS1313 Spring 2025

NOTICE!
% cat exitexample.c
#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int program_failure_code = -1;

 printf("This statement will be always be executed.\n");
 exit(program_failure_code);
 printf("This statement will be never be executed.\n");
} /* main */
% gcc -o exitexample exitexample.c
% exitexample
This statement will be always be executed.

To use an exit statement, you MUST include an
additional header file, IMMEDIATELY AFTER stdio.h:

#include <stdlib.h>

A New File to #include

15Idiotproofing Lesson
CS1313 Spring 2025

if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code); /* <--- NOTICE! */
} /* if (volume_in_fluid_ounces < ...) */

When you put an exit statement inside an if block,
the exit statement will be executed only in the event that
the appropriate clause of the if block is entered, and then
only after all prior statements in that clause of the if block
have already been executed.

exit Statement Inside an if Block #1

16Idiotproofing Lesson
CS1313 Spring 2025

if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code); /* <--- NOTICE! */
} /* if (volume_in_fluid_ounces < ...) */

In the above example, the exit statement is executed
only in the event that the volume in fluid ounces is negative,
and only after executing the printf statement that precedes
it.

exit Statement Inside an if Block #2

17Idiotproofing Lesson
CS1313 Spring 2025

if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code); /* <--- NOTICE! */
} /* if (volume_in_fluid_ounces < ...) */

Notice that the exit statement
DOESN'T have to have a comment after it.

exit Statement Inside an if Block #3

18Idiotproofing Lesson
CS1313 Spring 2025

if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code); /* <--- NOTICE! */
} /* if (volume_in_fluid_ounces < ...) */

Notice that the exit statement is inside the if block,
and therefore is indented MORE than the if statement.

exit Statement Inside an if Block #4

19Idiotproofing Lesson
CS1313 Spring 2025

volume
< 0?

if (volume_in_fluid_ounces <
 minimum_volume) {
 printf("ERROR: you can't have a negative");
 printf(" volume %f!\n",
 volume_in_fluid_ounces);
 exit(program_failure_code);
} /* if (volume_in_fluid_ounces < ...) */

Idiotproofing Example's Flowchart

	Idiotproofing Outline
	Idiotproofing
	Idiotproofing Quotes
	Bear Spray NOT Like Bug Spray
	An Idiotproof Website
	Idiotproofing Example #1
	Idiotproofing Example #2
	Why We Idiotproof
	The exit Statement #1
	The exit Statement #2
	The exit Statement #3
	The exit Statement #4
	exit Example's Flowchart
	A New File to #include
	exit Statement Inside an if Block #1
	exit Statement Inside an if Block #2
	exit Statement Inside an if Block #3
	exit Statement Inside an if Block #4
	Idiotproofing Example's Flowchart

