1. **HOW CAN YOU TELL** that a declaration statement declares a named constant?

2. **HOW CAN YOU TELL** that a declaration statement declares a variable?

3. **WHAT IS THE DIFFERENCE** between a constant and a variable? **NOTE:** This question is NOT about how can you tell what a declaration statement declares.

4. **WHAT IS THE DIFFERENCE** between a named constant and a literal constant? **NOTE:** This question is NOT about how can you tell what a declaration statement declares.

5. **WHY** are numeric literal constants in the body of a program BAD BAD BAD?

6. **WHY** are named constants in the body of a program GOOD?

7. For each of the following, **WRITE A DECLARATION STATEMENT** for a named constant representing this quantity. For each, you should choose an appropriate data type and initialization value. The name should comply with the “favorite professor” rule, and should also be a valid C identifier. Assume that `int` variables and `float` variables take 4 bytes (32 bits) each.
 - (a) normal human body temperature in degrees Fahrenheit
 - (b) boiling temperature of water in degrees Celsius (at sea level on Earth, in case you’re picky)
 - (c) length of a day in hours

8. **YES OR NO:** Are literal constants declared?

9. **WRITE** the shortest possible **VALID** C program. (Here, `valid` means acceptable to the compiler. The program does not have to be useful, nor does it have to follow any of this course’s rules for programming projects.) What does it do when you run it?
10. **WHY** can C only *approximate* most (mathematical) real numbers?

11. On a Linux PC under the GNU *gcc* compiler (the compiler being used in this course), **HOW MANY BITS** are in an *int*? Therefore, **HOW MANY DIFFERENT POSSIBLE VALUES** could an *int* variable represent?

12. On a Linux PC under the GNU *gcc* compiler (the compiler being used in this course), **HOW MANY BITS** are in a *float* by default? Therefore, **HOW MANY DIFFERENT POSSIBLE VALUES** could a *float* variable of the default number of bits exactly represent?

13. Consider each of these values. **MATHEMATICALLY**, does it represent an integer? **EXPLAIN.**
 (a) \(344513.000000000000000000000000000\)
 (b) \(344513.000000000000000000000000001\)
 (c) \(-1281023984\)
 (d) \(-6/3\)
 (e) \(+9/5\)
 (f) \(1 \cdot 10^{18}\)

14. Consider each of these numeric literal constants. **COMPUTATIONALLY**, does it represent an integer? **EXPLAIN.**
 (a) \(344513.000000000000000000000000000\)
 (b) \(344513.000000000000000000000000001\)
 (c) \(-5281023984\)
 (d) \(1E+15\)

15. **NAME THREE REASONS** why computers use both integers and real numbers.
 (a)
 (b)
 (c)
16. **WHAT IS THE DATA TYPE** of each of the following literal constants? If the item **ISN’T** a valid literal constant, mark it **INVALID** and **EXPLAIN**.

(a) 2004982098

(b) 2004982098.0

(c) 2,004,982,098

(d) -2004982098

(e) --2004982098

(f) 2004982098-

(g) -3529.3098e+10

(h) -3529.3098e-10

(i) 2e-05

(j) 2.0e-05

(k) 0

(l) 0.0

(m) "Howdy do!"

(n) "Huh?"

(o) What do you want?"

17. Numeric literal constants can be used in several ways, some of which are good programming practice and some of which are bad programming practice. **MARK** each of the following uses as either **GOOD** or **BAD**.

(a) const int feet_per_fathom = 6;

(b) float height_in_m = 1.6;

(c) snow_depth_in_inches = 2;

(d) degrees_fahrenheit = degrees_celsius * (9.0 / 5.0) + 32.0;
18. **WHAT IS THE OUTPUT** of each of these programs, for each of the following inputs? (You do not need to show the output of the greeting nor the prompt message.) Examine the programs **CAREFULLY.** If you are not confident of your answer, type in, compile and run the programs.

(a) ```c
#include <stdio.h>

int main ()
{
 const float standard_deduction = 4150.0;
 const float single_exemption = 2650.0;
 const float tax_rate = 0.15;
 const int tax_year = 1997;

 float income, tax;

 printf("I'm going to calculate the federal income tax\n");
 printf(" on your %d income.\n", tax_year);
 printf("What was your %d income in dollars?\n", tax_year);
 scanf("%f", &income);
 tax = (income -
 (standard_deduction + single_exemption)) * tax_rate;
 printf("The %d federal income tax on $%2.2f\n", tax_year, income);
 printf(" was $%2.2f.\n", tax);
} /* main */
``` 

i. 30000

ii. 40000

iii. 100000
(b) #include <stdio.h>

int main ()
{
    /* main */
    const float standard_deduction = 4300.0;
    const float single_exemption = 2750.0;
    const float tax_rate = 0.15;
    const int tax_year = 1999;

    float income, tax;

    printf("I’m going to calculate the federal income tax\n");
    printf(" on your %d income.\n", tax_year);
    printf("What was your %d income in dollars?\n", tax_year);
    scanf("%f", &income);
    tax = (income -
        (standard_deduction + single_exemption)) *
        tax_rate;
    printf("The %d federal income tax on $%2.2f\n", tax_year, income);
    printf(" was $%2.2f.\n", tax);
} /* main */

i. 30000

ii. 40000

iii. 100000

If you use ANY resources other than Dr. Neeman, the TAs (Gheibi, Reynolds, Sadri), the course textbook or the materials posted on the course webpage, you MUST reference them on the quiz. THIS INCLUDES CLASSMATES, FRIENDS, PROFESSORS, ONLINE RESOURCES, ETC.