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Suppose that there’s a line of a dozen students               
waiting for tickets for the next OU-Texas football game.

How many different orders can they have in the line?
 The head of the line could be any student.
 The 2nd position in line could be any student except        

the student at the head of the line.
 The 3rd position in line could be any student except         

the student at the head of the line or the student in            
the 2nd position.

 And so on.

for Loop Application
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Generalizing, we have that the number of different orders of 
the 12 students is:

12 ∙ 11 ∙ 10 ∙ ... ∙ 2 ∙ 1
We can also express this in the other direction:

1 ∙ 2 ∙ 3 ∙ ... ∙ 12
In fact, for any number of students n, we have that the number 

of orders is:
1 ∙ 2 ∙ 3 ∙ ... ∙ n

This arithmetic expression is called n factorial, denoted n!
There are n! permutations (orderings) of the n students.

Factorial
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#include <stdio.h>

int main ()
{ /* main */
    const int program_success_code = 0;
    int number_of_students;
    int permutations;
    int count;

    printf("How many students are in line for tickets?\n");
    scanf("%d", &number_of_students);
    permutations = 1;
    for (count = 1; count <= number_of_students; count++) {
        permutations = permutations * count;
    } /* for count */
    printf("There are %d different orders in which\n",
        permutations);
    printf("  the %d students can stand in line.\n",
        number_of_students);
    return program_success_code;
} /* main */

Factorial Program #1
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% gcc -o permute permute.c
% permute
How many students are in line for tickets?

12
There are 479001600 different orders in which

  the 12 students can stand in line.

Factorial Program #2
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The most common increment in a for loop is 1.               
For convenience, therefore, we typically use                     
the increment operator ++ in our loop change.          
For example:

int product;
int count;
product = 1;
for (count = 1; count <= 5; count++ ) {
    product *= count;
} /* for count */

for Loop With Implicit Increment
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We could state the loop increment explicitly in                       
the for statement, by using, for example,                                         
an addition assignment operator +=

int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 1) {
    product *= count;
} /* for count */

The above program fragment behaves identically to the one 
on the previous slide. Notice that both of the above loops 
have 5 iterations:

 count of 1, 2, 3, 4, 5.

for Loop With Explicit Increment #1
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On the other hand, if the loop increment isn’t 1,                  
then it MUST be explicitly stated, using, for example,                 
an addition assignment operator +=

int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 2) {
    product *= count;
} /* for count */
Notice that the above loop has only 3 iterations:
 count of 1, 3, 5.

for Loop With Explicit Increment #2
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int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 2) {
    product *= count;
} /* for count */
The above program fragment behaves identically to:
int product = 1;
int count;
count = 1;        /* count == 1, product ==  1 */
product *= count; /* count == 1, product ==  1 */
count += 2;       /* count == 3, product ==  1 */
product *= count; /* count == 3, product ==  3 */
count += 2;       /* count == 5, product ==  3 */
product *= count; /* count == 5, product == 15 */
count += 2;       /* count == 7, product == 15 */

for Loop With Explicit Increment #3
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Sometimes, we want to loop backwards, from a high initial 
value to a low final value. To do this, we use a negative 
loop increment; that is, we use the decrement operator -- :

count--

for Loop with Negative Increment
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#include <stdio.h>
#include <math.h>

int main ()
{ /* main */
    const int input_digits         =  4;
    const int base                 = 10;
    const int program_success_code =  0;
    int base_power, input_value;
    int base_digit_value, output_digit;

    printf("Input an integer of no more ");
    printf("than %d digits:\n", input_digits);
    scanf("%d", &input_value);

for Loop with Decrement Example #1
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for (base_power = input_digits - 1;
         base_power >= 0; base_power--) {
        base_digit_value = pow(base, base_power);
        if (input_value < base_digit_value) {
            printf("%2d^%1d: 0\n",
                base, base_power, output_digit);
        } /* if (input_value < ...) */
        else {
            output_digit =
                input_value / base_digit_value;
            printf("%2d^%1d: %1d\n",
                base, base_power, output_digit);
            input_value =
                input_value -
                output_digit * base_digit_value;
        } /* if (input_value >= ...)...else */
    } /* for base_power */
    return program_success_code;
} /* main */

for Loop with Decrement Example #2
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% gcc -o decimaldigits decimaldigits.c -lm
% decimaldigits
Input an integer of no more than 4 digits:
3984
10^3: 3
10^2: 9
10^1: 8
10^0: 4
% decimaldigits
Input an integer of no more than 4 digits:
1024
10^3: 1
10^2: 0
10^1: 2
10^0: 4

for Loop with Decrement Example #3
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For the loop lower bound and upper bound,                          
and for the stride if there is one,                                          
we can use int named constants.

for Loop with Named Constants
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#include <stdio.h>
int main ()
{ /* main */
    const int initial_sum          =  0;
    const int initial_value        =  1;
    const int final_value          = 20;
    const int stride               =  3;
    const int program_success_code =  0;
    int count, sum;

    sum = initial_sum;
    for (count = initial_value;
         count <= final_value; count += stride) {
        sum = sum + count;
        printf("count = %d, sum = %d\n",
            count, sum);
    } /* for count */
    printf("After loop, count = %d, sum = %d.\n",
        count, sum);
    return program_success_code;
} /* main */

for Loop w/Named Constants Example #1
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% gcc -o loopbndconsts loopbndconsts.c
% loopbndconsts
count = 1, sum = 1
count = 4, sum = 5
count = 7, sum = 12
count = 10, sum = 22
count = 13, sum = 35
count = 16, sum = 51
count = 19, sum = 70
After loop, count = 22, sum = 70.
In fact, we should use int named constants                  

instead of int literal constants:                                      
it’s much better programming practice, because                    
it’s much easier to change the loop bounds and the stride.

for Loop w/Named Constants Example #2
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For the loop lower bound, loop upper bound and loop stride, 
we can use int variables.

for Loop with Variables



18
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
    const int initial_sum          = 0;
    const int program_success_code = 0;
    int initial_value, final_value, stride;
    int count, sum;

    printf("What are the initial, final and ");
    printf("stride values?\n");
    scanf("%d %d %d",
        &initial_value, &final_value, &stride);
    sum = initial_sum;
    for (count = initial_value;
         count <= final_value; count += stride) {
        sum = sum + count;
        printf("count = %d, sum = %d\n", count, sum);
    } /* for count */
    printf("After loop, count = %d, sum = %d.\n",
        count, sum);
    return program_success_code;
} /* main */

for Loop with Variables Example #1
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% gcc -o loopbndvars loopbndvars.c
% loopbndvars
What are the initial, final and stride values?
1 7 2
count = 1, sum = 1
count = 3, sum = 4
count = 5, sum = 9
count = 7, sum = 16
After the loop, count = 9, sum = 16.

for Loop with Variables Example #2
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If we don’t happen to have a variable handy                         
that represents one of the loop bounds or the stride,          
then we can use an expression.

for Loop with Expressions
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#include <stdio.h>

int main ()
{ /* main */
    const int initial_sum          = 0;
    const int program_success_code = 0;
    int initial_value, final_value, multiplier;
    int count, sum;

    printf("What are the initial, final and ");
    printf("multiplier values?\n");
    scanf("%d %d %d",
        &initial_value, &final_value, &multiplier);
    sum = initial_sum;
    for (count =  initial_value * multiplier;
         count <= final_value   * multiplier;
         count += multiplier - 1) {
        sum = sum + count;
        printf("count = %d, sum = %d\n", count, sum);
    } /* for count */
    printf("After loop, count = %d, sum = %d.\n",
        count, sum);
    return program_success_code;
} /* main */

for Loop with Expressions Example #1
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% gcc -o loopbndexprs loopbndexprs.c
% loopbndexprs
What are the initial, final and multiplier values?
1 7 2
count = 2, sum = 2
count = 3, sum = 5
count = 4, sum = 9
count = 5, sum = 14
count = 6, sum = 20
count = 7, sum = 27
count = 8, sum = 35
count = 9, sum = 44
count = 10, sum = 54
count = 11, sum = 65
count = 12, sum = 77
count = 13, sum = 90
count = 14, sum = 104
After the loop, count = 15, sum = 104.

for Loop with Expressions Example #2


	for Loop Lesson 2 Outline
	for Loop Application
	Factorial
	Factorial Program #1
	Factorial Program #2
	for Loop With Implicit Increment
	for Loop With Explicit Increment #1
	for Loop With Explicit Increment #2
	for Loop With Explicit Increment #3
	for Loop with Negative Increment
	for Loop with Decrement Example #1
	for Loop with Decrement Example #2
	for Loop with Decrement Example #3
	for Loop with Named Constants
	for Loop w/Named Constants Example #1
	for Loop w/Named Constants Example #2
	for Loop with Variables
	for Loop with Variables Example #1
	for Loop with Variables Example #2
	for Loop with Expressions
	for Loop with Expressions Example #1
	for Loop with Expressions Example #2

