
1
for Loop Lesson 2

CS1313 Spring 2025

14. for Loop with Named Constants
15. for Loop w/Named Constants Example

#1
16. for Loop w/Named Constants Example

#2
17. for Loop with Variables
18. for Loop with Variables Example #1
19. for Loop with Variables Example #2
20. for Loop with Expressions
21. for Loop with Expressions Example #1
22. for Loop with Expressions Example #2

1. for Loop Lesson 2 Outline
2. for Loop Application
3. Factorial
4. Factorial Program #1
5. Factorial Program #2
6. for Loop With Implicit Increment
7. for Loop With Explicit Increment #1
8. for Loop With Explicit Increment #2
9. for Loop With Explicit Increment #3
10. for Loop with Negative Increment
11. for Loop with Decrement Example #1
12. for Loop with Decrement Example #2
13. for Loop with Decrement Example #3

for Loop Lesson 2 Outline

2
for Loop Lesson 2

CS1313 Spring 2025

Suppose that there’s a line of a dozen students
waiting for tickets for the next OU-Texas football game.

How many different orders can they have in the line?
 The head of the line could be any student.
 The 2nd position in line could be any student except

the student at the head of the line.
 The 3rd position in line could be any student except

the student at the head of the line or the student in
the 2nd position.

 And so on.

for Loop Application

3
for Loop Lesson 2

CS1313 Spring 2025

Generalizing, we have that the number of different orders of
the 12 students is:

12 ∙ 11 ∙ 10 ∙ ... ∙ 2 ∙ 1
We can also express this in the other direction:

1 ∙ 2 ∙ 3 ∙ ... ∙ 12
In fact, for any number of students n, we have that the number

of orders is:
1 ∙ 2 ∙ 3 ∙ ... ∙ n

This arithmetic expression is called n factorial, denoted n!
There are n! permutations (orderings) of the n students.

Factorial

4
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int program_success_code = 0;
 int number_of_students;
 int permutations;
 int count;

 printf("How many students are in line for tickets?\n");
 scanf("%d", &number_of_students);
 permutations = 1;
 for (count = 1; count <= number_of_students; count++) {
 permutations = permutations * count;
 } /* for count */
 printf("There are %d different orders in which\n",
 permutations);
 printf(" the %d students can stand in line.\n",
 number_of_students);
 return program_success_code;
} /* main */

Factorial Program #1

5
for Loop Lesson 2

CS1313 Spring 2025

% gcc -o permute permute.c
% permute
How many students are in line for tickets?

12
There are 479001600 different orders in which

 the 12 students can stand in line.

Factorial Program #2

6
for Loop Lesson 2

CS1313 Spring 2025

The most common increment in a for loop is 1.
For convenience, therefore, we typically use
the increment operator ++ in our loop change.
For example:

int product;
int count;
product = 1;
for (count = 1; count <= 5; count++) {
 product *= count;
} /* for count */

for Loop With Implicit Increment

7
for Loop Lesson 2

CS1313 Spring 2025

We could state the loop increment explicitly in
the for statement, by using, for example,
an addition assignment operator +=

int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 1) {
 product *= count;
} /* for count */

The above program fragment behaves identically to the one
on the previous slide. Notice that both of the above loops
have 5 iterations:

 count of 1, 2, 3, 4, 5.

for Loop With Explicit Increment #1

8
for Loop Lesson 2

CS1313 Spring 2025

On the other hand, if the loop increment isn’t 1,
then it MUST be explicitly stated, using, for example,
an addition assignment operator +=

int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 2) {
 product *= count;
} /* for count */
Notice that the above loop has only 3 iterations:
 count of 1, 3, 5.

for Loop With Explicit Increment #2

9
for Loop Lesson 2

CS1313 Spring 2025

int product;
int count;
product = 1;
for (count = 1; count <= 5; count += 2) {
 product *= count;
} /* for count */
The above program fragment behaves identically to:
int product = 1;
int count;
count = 1; /* count == 1, product == 1 */
product *= count; /* count == 1, product == 1 */
count += 2; /* count == 3, product == 1 */
product *= count; /* count == 3, product == 3 */
count += 2; /* count == 5, product == 3 */
product *= count; /* count == 5, product == 15 */
count += 2; /* count == 7, product == 15 */

for Loop With Explicit Increment #3

10
for Loop Lesson 2

CS1313 Spring 2025

Sometimes, we want to loop backwards, from a high initial
value to a low final value. To do this, we use a negative
loop increment; that is, we use the decrement operator -- :

count--

for Loop with Negative Increment

11
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>
#include <math.h>

int main ()
{ /* main */
 const int input_digits = 4;
 const int base = 10;
 const int program_success_code = 0;
 int base_power, input_value;
 int base_digit_value, output_digit;

 printf("Input an integer of no more ");
 printf("than %d digits:\n", input_digits);
 scanf("%d", &input_value);

for Loop with Decrement Example #1

12
for Loop Lesson 2

CS1313 Spring 2025

for (base_power = input_digits - 1;
 base_power >= 0; base_power--) {
 base_digit_value = pow(base, base_power);
 if (input_value < base_digit_value) {
 printf("%2d^%1d: 0\n",
 base, base_power, output_digit);
 } /* if (input_value < ...) */
 else {
 output_digit =
 input_value / base_digit_value;
 printf("%2d^%1d: %1d\n",
 base, base_power, output_digit);
 input_value =
 input_value -
 output_digit * base_digit_value;
 } /* if (input_value >= ...)...else */
 } /* for base_power */
 return program_success_code;
} /* main */

for Loop with Decrement Example #2

13
for Loop Lesson 2

CS1313 Spring 2025

% gcc -o decimaldigits decimaldigits.c -lm
% decimaldigits
Input an integer of no more than 4 digits:
3984
10^3: 3
10^2: 9
10^1: 8
10^0: 4
% decimaldigits
Input an integer of no more than 4 digits:
1024
10^3: 1
10^2: 0
10^1: 2
10^0: 4

for Loop with Decrement Example #3

14
for Loop Lesson 2

CS1313 Spring 2025

For the loop lower bound and upper bound,
and for the stride if there is one,
we can use int named constants.

for Loop with Named Constants

15
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int initial_sum = 0;
 const int initial_value = 1;
 const int final_value = 20;
 const int stride = 3;
 const int program_success_code = 0;
 int count, sum;

 sum = initial_sum;
 for (count = initial_value;
 count <= final_value; count += stride) {
 sum = sum + count;
 printf("count = %d, sum = %d\n",
 count, sum);
 } /* for count */
 printf("After loop, count = %d, sum = %d.\n",
 count, sum);
 return program_success_code;
} /* main */

for Loop w/Named Constants Example #1

16
for Loop Lesson 2

CS1313 Spring 2025

% gcc -o loopbndconsts loopbndconsts.c
% loopbndconsts
count = 1, sum = 1
count = 4, sum = 5
count = 7, sum = 12
count = 10, sum = 22
count = 13, sum = 35
count = 16, sum = 51
count = 19, sum = 70
After loop, count = 22, sum = 70.
In fact, we should use int named constants

instead of int literal constants:
it’s much better programming practice, because
it’s much easier to change the loop bounds and the stride.

for Loop w/Named Constants Example #2

17
for Loop Lesson 2

CS1313 Spring 2025

For the loop lower bound, loop upper bound and loop stride,
we can use int variables.

for Loop with Variables

18
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int initial_sum = 0;
 const int program_success_code = 0;
 int initial_value, final_value, stride;
 int count, sum;

 printf("What are the initial, final and ");
 printf("stride values?\n");
 scanf("%d %d %d",
 &initial_value, &final_value, &stride);
 sum = initial_sum;
 for (count = initial_value;
 count <= final_value; count += stride) {
 sum = sum + count;
 printf("count = %d, sum = %d\n", count, sum);
 } /* for count */
 printf("After loop, count = %d, sum = %d.\n",
 count, sum);
 return program_success_code;
} /* main */

for Loop with Variables Example #1

19
for Loop Lesson 2

CS1313 Spring 2025

% gcc -o loopbndvars loopbndvars.c
% loopbndvars
What are the initial, final and stride values?
1 7 2
count = 1, sum = 1
count = 3, sum = 4
count = 5, sum = 9
count = 7, sum = 16
After the loop, count = 9, sum = 16.

for Loop with Variables Example #2

20
for Loop Lesson 2

CS1313 Spring 2025

If we don’t happen to have a variable handy
that represents one of the loop bounds or the stride,
then we can use an expression.

for Loop with Expressions

21
for Loop Lesson 2

CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int initial_sum = 0;
 const int program_success_code = 0;
 int initial_value, final_value, multiplier;
 int count, sum;

 printf("What are the initial, final and ");
 printf("multiplier values?\n");
 scanf("%d %d %d",
 &initial_value, &final_value, &multiplier);
 sum = initial_sum;
 for (count = initial_value * multiplier;
 count <= final_value * multiplier;
 count += multiplier - 1) {
 sum = sum + count;
 printf("count = %d, sum = %d\n", count, sum);
 } /* for count */
 printf("After loop, count = %d, sum = %d.\n",
 count, sum);
 return program_success_code;
} /* main */

for Loop with Expressions Example #1

22
for Loop Lesson 2

CS1313 Spring 2025

% gcc -o loopbndexprs loopbndexprs.c
% loopbndexprs
What are the initial, final and multiplier values?
1 7 2
count = 2, sum = 2
count = 3, sum = 5
count = 4, sum = 9
count = 5, sum = 14
count = 6, sum = 20
count = 7, sum = 27
count = 8, sum = 35
count = 9, sum = 44
count = 10, sum = 54
count = 11, sum = 65
count = 12, sum = 77
count = 13, sum = 90
count = 14, sum = 104
After the loop, count = 15, sum = 104.

for Loop with Expressions Example #2

	for Loop Lesson 2 Outline
	for Loop Application
	Factorial
	Factorial Program #1
	Factorial Program #2
	for Loop With Implicit Increment
	for Loop With Explicit Increment #1
	for Loop With Explicit Increment #2
	for Loop With Explicit Increment #3
	for Loop with Negative Increment
	for Loop with Decrement Example #1
	for Loop with Decrement Example #2
	for Loop with Decrement Example #3
	for Loop with Named Constants
	for Loop w/Named Constants Example #1
	for Loop w/Named Constants Example #2
	for Loop with Variables
	for Loop with Variables Example #1
	for Loop with Variables Example #2
	for Loop with Expressions
	for Loop with Expressions Example #1
	for Loop with Expressions Example #2

