for Loop Lesson 2 Outline

WSk W=

o p—
_— O

—_—
W N

R

for Loop Lesson 2 Outline

for Loop Application

Factorial

Factorial Program #1

Factorial Program #2

for Loop With Implicit Increment
for Loop With Explicit Increment #1
for Loop With Explicit Increment #2
for Loop With Explicit Increment #3
for Loop with Negative Increment
for Loop with Decrement Example #1
for Loop with Decrement Example #2

for Loop with Decrement Example #3

14.
15.

16.

17.
18.
19.
20.
21.
22.

for Loop with Named Constants

for Loop w/Named Constants Example
#1

for Loop w/Named Constants Example
#2

for Loop with Variables

for Loop with Variables Example #1
for Loop with Variables Example #2
for Loop with Expressions

for Loop with Expressions Example #1

for Loop with Expressions Example #2

for Loop Lesson 2 |
CS1313 Spring 2025

for Loop Application

Suppose that there’s a line of a dozen students
waiting for tickets for the next OU-Texas football game.

How many different orders can they have in the line?
m The head of the line could be any student.

m The 2nd position in line could be any student except
the student at the head of the line.

m The 3rd position in line could be any student except
the student at the head of the line or the student in
the 2nd position.

s And so on.

for Loop Lesson 2
CS1313 Spring 2025

Factorial

Generalizing, we have that the number of different orders of
the 12 students 1s:

12¢11°10°...°2°1
We can also express this 1n the other direction:
12°3°..°12
In fact, for any number of students n, we have that the number
of orders 1is:

1°2°3°...°n
This arithmetic expression is called n_factorial, denoted n!
There are n! permutations (orderings) of the » students.

for Loop Lesson 2
CS1313 Spring 2025 3

QJ Factorial Program #1

#include <stdio.h>

int main ()
{ /* main */
const int program success code = 0;
int number of students;
int permutations;
int count;

printf ("How many students are in line for tickets?\n");

scanf ("%d", &number of students);

permutations = 1;

for (count = 1; count <= number of students; count++) {
permutations = permutations * count;

} /* for count */
printf ("There are %d different orders in which\n",

permutations) ;
printf (" the %d students can stand in line.\n",

number of students);
return program success_ code;
} /* main */

for Loop Lesson 2
CS1313 Spring 2025 4

Factorial Program #2

% gcc -o permute permute.c

% permute

How many students are in line for tickets?

12

There are 479001600 different orders in which

the 12 students can stand in line.

for Loop Lesson 2
CS1313 Spring 2025

for Loop With Implicit Increment

The most common incrementina for loopis 1.

For convenience, therefore, we typically use
the increment operator -+ 1n our loop change.
For example:

int product;
int count;
product = 1;

for (count 1; count <= 5; coun‘@) {
product *= count;

} /* for count */

for Loop Lesson 2
CS1313 Spring 2025

for Loop With Explicit Increment #1

We could state the loop increment explicitly in
the for statement, by using, for example,
an addition assignment operator +=

int product;

int count;

product = 1;

for (count = 1; count <= 5; count@l) {
product *= count;

} /* for count */

The above program fragment behaves identically to the one

on the previous slide. Notice that both of the above loops
have 5 iterations:
count ofl, 2, 3,4, 5.

for Loop Lesson 2
CS1313 Spring 2025

for Loop With Explicit Increment #2

On the other hand, i1f the loop increment 1sn’t 1,

then 1t MUST be explicitly stated, using, for example,
an addition assignment operator +=

int product;
int count;
product = 1;
for (count = 1; count <= 5; count @2) {
product *= count;

} /* for count */
Notice that the above loop has only 3 iterations:

count ofl, 3, 5.

for Loop Lesson 2
CS1313 Spring 2025

for Loop With Explicit Increment #3

int product;
int count;
product = 1;

for (count = 1;

int product = 1;
int count;
count = 1;

product *= count;

count += 2;

product *= count;

count += 2;

product *= count;

count += 2;

R

count
product *= count;
} /* for count */

The above program fragment behaves identically to:

/*
/*
/*
/*
/*
/*
/*

<= 5; count += 2)

count ==
count ==
count ==
count
count
count
count

~ ~ ~ ~

~

~

|
I
<O O0TWwW Wk

~

for Loop Lesson 2
CS1313 Spring 2025

product
product

product ==
product ==
product ==
product ==

product

*/
*/
*/
*/
*/
*/
*/

for Loop with Negative Increment

Sometimes, we want to loop backwards, from a high 1nitial

value to a low final value. To do this, we use a negative
loop increment; that 1s, we use the decrement operator -- :

count—-

for Loop Lesson 2
CS1313 Spring 2025 10

for Loop with Decrement Example #1

#include <stdio.h>
#include <math.h>

int main ()
{ /* main */

const 1nt i1nput digilts = 45
const 1nt base = 10;
const 1nt program success code = 0;

int base power, input value;
int base digit value, output digit;

printf ("Input an 1nteger of no more ");

printf ("than %d digits:\n", input digits);
scanf ("%sd", &input value);

for Loop Lesson 2
CS1313 Spring 2025

11

for Loop with Decrement Example #2

}

for (base power = input digits - 1;
base power >= 0; base power--) ({
base digit value = pow(base, base power);
if (input value < base digit value) {
printf ("% $1d: 0\n",
base, base_power, output digit);
} /* 1f (input value < ...) */
else {

output digit =
input value / base digit wvalue;
printf ("%$2d"%1d: %1d\n",
base, base power, output digit);
input_value = B
input value -
output digit * base dlglt value;
} /* 1f (input value >= ...)...else */
} /* for base power */
return program success code;

/* main */

for Loop Lesson 2
CS1313 Spring 2025 12

for Loop with Decrement Example #3

gcc -o decimaldigits decimaldigits.c -1m

3
3

decimaldigits
Input an integer of no more than 4 digits:
3984
1073: 3
10%2: 9
1071: 8
1070: 4

% decimaldigits

Input an integer of no more than 4 digits:
1024
1073
1072
1071
1070

for Loop Lesson 2
CS1313 Spring 2025 13

=N O -

for Loop with Named Constants

For the loop lower bound and upper bound,

and for the stride if there is one,
we can use int named constants.

for Loop Lesson 2
CS1313 Spring 2025

14

for Loop w/Named Constants Example #1

#include <stdio.h>

int main ()

{ /* main */
const int initial sum =
const int initial wvalue
const int final value
const int stride
const int program success code
int count, sum;

I
N
OWOoOr o
e W

sum = initial sum;
for (count = initial value;
count <= final value; count += stride) {
sum = sum + count;
printf ("count = %d, sum = %d\n",
count, sum);
} /* for count */
printf ("After loop, count = %d, sum = %d.\n",
count, sum);
return program success code;
} /* main */ a a

for Loop Lesson 2
CS1313 Spring 2025 15

for Loop w/Named Constants Example #2

% gcc -o loopbndconsts loopbndconsts.c
% loopbndconsts

count = 1, sum = 1
count = 4, sum = 5
count = 7, sum = 12
count = 10, sum = 22
count = 13, sum = 35
count = 16, sum = 51
count = 19, sum = 70

After loop, count = 22, sum = 7/0.

In fact, we should use int named constants
instead of int literal constants:
it’s much better programming practice, because
it’s much easier to change the loop bounds and the stride.

for Loop Lesson 2
CS1313 Spring 2025 16

for Loop with Variables

For the loop lower bound, loop upper bound and loop stride,
we can use int variables.

for Loop Lesson 2
CS1313 Spring 2025

17

for Loop with Variables Example #1

#include <stdio.h>

int main ()

{ /* main */
const int initial sum = 0;
const 1nt program success code = 0;
int initial wvalue, final value, stride;
int count, sum; a

printf ("What are the i1nitial, final and ");
printf ("stride values?\n");
scanf ("%d %$d %d",

&initial value, &final value, &stride);

sum = 1nitial sum;
for (count = initial value;
count <= final value; count += stride) {
sum = sum + count;
printf ("count = %d, sum = %d\n", count, sum);
} /* for count */
printf ("After loop, count = %d, sum = %d.\n",

count, sum);
return program success code;
} /* main */ a -
for Loop Lesson 2
CS1313 Spring 2025

for Loop with Variables Example #2

% gcc -o loopbndvars loopbndvars.c

loopbndvars
What are the initial, final and stride wvalues?
1 7 2
count = 1, sum = 1
count = 3, sum = 4
count = 5, sum = 9
count = 7, sum = 16

After the loop, count = 9, sum = 16.

for Loop Lesson 2
CS1313 Spring 2025

for Loop with Expressions

If we don’t happen to have a variable handy
that represents one of the loop bounds or the stride,
then we can use an expression.

for Loop Lesson 2
CS1313 Spring 2025

20

for Loop with Expressions Example #1

#include <stdio.h>

int main ()
{ /* main */
const int initial sum = 0;
const 1nt program success code = 0;
int initial value, final value, multiplier;
int count, sum; a

printf ("What are the 1nitial, final and ");
printf ("multiplier values?\n");
scanf ("%d %$d %d",

&initial value, &final value, &multiplier);

sum = initial sum;
for (count = 1initial value * multiplier;
count <= final value * multiplier;
count += multiplier - 1) ¢{
sum = sum + count;
printf ("count = %d, sum = %d\n", count, sum);
} /* for count */
printf ("After loop, count = %d, sum = %d.\n",

count, sum);
return program success_ code;

} /* main */
for Loop Lesson 2
CS1313 Spring 2025 21

for Loop with Expressions Example #2

% gcc -o loopbndexprs loopbndexprs.c

% loopbndexprs
What are the i1initial, final and multiplier values?

1 7 2

count = 2, sum = 2
count = 3, sum = 5
count = 4, sum = 9
count = 5, sum = 14
count = 6, sum = 20
count = 7, sum = 27
count = 8, sum = 35
count = 9, sum = 44
count = 10, sum = 54
count = 11, sum = 65
count = 12, sum = 77
count = 13, sum = 90
count = 14, sum = 104

After the loop, count = 15, sum = 104.

for Loop Lesson 2
CS1313 Spring 2025 22

	for Loop Lesson 2 Outline
	for Loop Application
	Factorial
	Factorial Program #1
	Factorial Program #2
	for Loop With Implicit Increment
	for Loop With Explicit Increment #1
	for Loop With Explicit Increment #2
	for Loop With Explicit Increment #3
	for Loop with Negative Increment
	for Loop with Decrement Example #1
	for Loop with Decrement Example #2
	for Loop with Decrement Example #3
	for Loop with Named Constants
	for Loop w/Named Constants Example #1
	for Loop w/Named Constants Example #2
	for Loop with Variables
	for Loop with Variables Example #1
	for Loop with Variables Example #2
	for Loop with Expressions
	for Loop with Expressions Example #1
	for Loop with Expressions Example #2

