
1
for Loop Lesson 1

CS1313 Spring 2025

17. for Loop
18. for Loop vs while Loop
19. for Loop Flowchart
20. Three Programs That Behave the Same #1
21. Three Programs That Behave the Same #2
22. Three Programs That Behave the Same #3
23. Three Programs That Behave the Same #4
24. for Loop Example
25. for Loop Behavior #1
26. for Loop Behavior #2
27. for Loop Behavior #3
28. for Loop Behavior #4
29. for Loop Behavior #5
30. for Loop Behavior #6
31. Why Have for Loops?

1. for Loop Lesson 1 Outline
2. A while Loop That Counts #1
3. A while Loop That Counts #2
4. A while Loop That Counts #3
5. A while Loop That Counts #4
6. Count-Controlled Loops #1
7. Count-Controlled Loops #2
8. Count-Controlled Loop Flowchart
9. Arithmetic Assignment Operators #1
10. Arithmetic Assignment Operators #2
11. Jargon: Syntactic Sugar
12. Increment & Decrement Operators #1
13. x = x + 1 : Programmers vs

Mathematicians
14. Increment & Decrement Operators #2
15. Increment & Decrement Operators #3
16. Increment & Decrement Operators #4

for Loop Lesson 1 Outline

2
for Loop Lesson 1

CS1313 Spring 2025

#include <stdio.h>

#include <stdlib.h>

int main ()

{ /* main */

 const int initial_sum = 0;

 const int increment = 1;

 const int program_success_code = 0;

 const int program_failure_code = -1;

 int initial_value, final_value;

 int count;

 int sum;

A while Loop That Counts #1

3
for Loop Lesson 1

CS1313 Spring 2025

printf("What value would you like to ");
 printf("start counting at?\n");
 scanf("%d", &initial_value);
 printf("What value would you like to ");
 printf("stop counting at,\n");
 printf(" which must be greater than ");
 printf("or equal to %d?\n", initial_value);
 scanf("%d", &final_value);
 if (final_value < initial_value) {
 printf("ERROR: the final value %d is less\n",
 final_value);
 printf(" than the initial value %d.\n",
 initial_value);
 exit(program_failure_code);
 } /* if (final_value < initial_value) */

A while Loop That Counts #2

4
for Loop Lesson 1

CS1313 Spring 2025

sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */
 printf("The sum of the integers from");
 printf(" %d through %d is %d.\n",
 initial_value, final_value, sum);
 return program_success_code;
} /* main */

A while Loop That Counts #3

5
for Loop Lesson 1

CS1313 Spring 2025

% gcc -o whilecount whilecount.c
% whilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
 which must be greater than or equal to 1?
0
ERROR: the final value 0 is less
 than the initial value 1.
% whilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
which must be greater than or equal to 1?
5
The sum of the integers from 1 through 5 is 15.

A while Loop That Counts #4

6
for Loop Lesson 1

CS1313 Spring 2025

On the previous slide, we saw a case of a loop that:
 executes a specific number of iterations,
 by using a counter variable,
 which is initialized to a particular initial value
 and is incremented (increased by 1) at the end of

each iteration of the loop,
 until it goes beyond a particular final value:
 sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */

Count-Controlled Loops #1

7
for Loop Lesson 1

CS1313 Spring 2025

sum = initial_sum;
 count = initial_value;
 while (count <= final_value) {
 sum = sum + count;
 count = count + increment;
 } /* while (count <= final_value) */
We call this kind of loop a count-controlled loop.
If we express a count-controlled loop as a while loop,

then the general form is:
 counter = initial_value;
 while (counter <= final value) {
 statement1;
 statement2;
 ...
 counter = counter + 1;
 } /* while (counter <= final value) */

Count-Controlled Loops #2

8
for Loop Lesson 1

CS1313 Spring 2025

counter = initial_value;
while (counter <= final value) {
 statement1;
 statement2;
 ...
 counter = counter + 1;
} /* while (counter <= final value) */
statement_after;

Count-Controlled Loop Flowchart

9
for Loop Lesson 1

CS1313 Spring 2025

Some while back, we saw the following:
x = x + y;

We learned that this statement increases the value of x by y.
That is, the statement takes the old value of x, adds y to it,

then assigns the result of this addition to x.
This kind of statement is so common that the C language has

a special operator for it, called the
addition assignment operator:

x += y;

Note that the two statements above behave identically.

Arithmetic Assignment Operators #1

10
for Loop Lesson 1

CS1313 Spring 2025

This: Is identical to this: Operation Name

x += y; x = x + y; Addition assignment

x -= y; x = x – y; Subtraction assignment

x *= y; x = x * y; Multiplication assignment

x /= y; x = x / y; Division assignment

x %= y; x = x % y; Remainder assignment
(int operands only)

C also has arithmetic assignment operators for
the other arithmetic operations:

Arithmetic Assignment Operators #2

11
for Loop Lesson 1

CS1313 Spring 2025

Syntactic sugar is a programming language construct
that doesn’t add any new capability to the language,
but makes the language a bit easier to use.

Arithmetic assignment operations are syntactic sugar.

Jargon: Syntactic Sugar

12
for Loop Lesson 1

CS1313 Spring 2025

One of the most common addition assignments is:
x = x + 1;

We learned that this statement increases the value of x by 1.
That is, the statement takes the old value of x, adds 1 to it,

then assigns the resulting sum to x.
For this statement, we could use the addition assignment operator:

x += 1;

Increment & Decrement Operators #1

13
for Loop Lesson 1
CS1313 Spring 2025

https://img-9gag-fun.9cache.com/photo/a07QQ9d_700bwp.webp

x = x + 1 : Programmers vs Mathematicians

https://img-9gag-fun.9cache.com/photo/a07QQ9d_700bwp.webp

14
for Loop Lesson 1

CS1313 Spring 2025

x = x + 1;

For this statement, we could use the addition assignment operator:
x += 1;

But this statement is MUCH more common than
x += y;

for generic y, so the C language has another special operator,
called the increment operator:

x++;

(This is also known as the autoincrement operator.)

Increment & Decrement Operators #2

15
for Loop Lesson 1

CS1313 Spring 2025

https://img-9gag-fun.9cache.com/photo/av59v7X_700bwp.webp

x = x + 1;

x += 1;

Increment operator:
x++;

Also:
x = x – 1;

x -= 1;

x--;

This is known as the decrement operator
(and also as the autodecrement operator).

Increment & Decrement Operators #3

https://img-9gag-fun.9cache.com/photo/av59v7X_700bwp.webp

16
for Loop Lesson 1

CS1313 Spring 2025

Note that the increment and decrement operators are
syntactic sugar, just like the arithmetic assignment operators.

This: is identical to this: is identical to this: Name

x++; x += 1; x = x + 1; Increment (or
autoincrement)

x--; x -= 1; x = x – 1; Decrement (or
autodecrement)

Increment & Decrement Operators #4

17
for Loop Lesson 1

CS1313 Spring 2025

A for loop has this form:
 for (counter = initial_value;
 counter <= final_value; counter++) {
 statement1;
 statement2;
 ...
 } /* for counter */

for Loop

18
for Loop Lesson 1

CS1313 Spring 2025

A for loop has this form:
 for (counter = initial_value;
 counter <= final_value; counter++) {
 statement1;
 statement2;
 ...
 } /* for counter */
A for loop behaves exactly the same as

a count-controlled while loop:
 counter = initial_value;
 while (counter <= final value) {
 statement1;
 statement2;
 ...
 counter = counter + 1;
 } /* while (counter <= final value) */

for Loop vs while Loop

19
for Loop Lesson 1

CS1313 Spring 2025

Notice that the for loop flowchart is
identical to the while loop flowchart
on slide 8 – NOT A COINCIDENCE!

for (counter = initial_value;
 counter <= final_value;
 counter++) {
 statement1;
 statement2;
 ...
} /* for counter */
statement_after;

for Loop Flowchart

20
for Loop Lesson 1

CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 int count;
 int sum;

 sum = 0;
 count = 1;
 sum = sum + count;
 count = count + 1;
 sum = sum + count;
 count = count + 1;
 sum = sum + count;
 count = count + 1;
 sum = sum + count;
 count = count + 1;
 sum = sum + count;
 count = count + 1;
 printf("count = %d\n", count);
 printf("sum = %d\n", sum);
 return 0;
} /* main */

Three Programs That Behave the Same #1

21
for Loop Lesson 1

CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 int count;
 int sum;

 sum = 0;
 count = 1;
 while (count <= 5) {
 sum = sum + count;
 count += 1;
 } /* while (count <= 5) */
 printf("count = %d\n", count);
 printf("sum = %d\n", sum);
 return 0;
} /* main */

Three Programs That Behave the Same #2

22
for Loop Lesson 1

CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 int count;
 int sum;

 sum = 0;
 for (count = 1; count <= 5; count++) {
 sum = sum + count;
 } /* for count */
 printf("count = %d\n", count);
 printf("sum = %d\n", sum);
 return 0;
} /* main */

Three Programs That Behave the Same #3

23
for Loop Lesson 1

CS1313 Spring 2025

% gcc -o manycountstmts manycountstmts.c
% manycountstmts
count = 6
sum = 15

% gcc -o while_loop while_loop.c
% while_loop
count = 6
sum = 15

% gcc -o for_loop for_loop.c
% for_loop
count = 6
sum = 15

Three Programs That Behave the Same #4

24
for Loop Lesson 1

CS1313 Spring 2025

% cat product_loop.c
#include <stdio.h>
int main ()
{ /* main */
 int count;
 int product;

 product = 1;
 for (count = 1; count <= 5; count++) {
 product = product * count;
 } /* for count */
 printf("After the loop: count = %d, ", count);
 printf("product = %d\n", product);
 return 0;
} /* main */
% gcc -o product_loop product_loop.c
% product_loop
After the loop: count = 6, product = 120

for Loop Example

for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */

1. The loop initialization is performed; typically,
the loop control variable (also known as
the loop counter or the loop index) is assigned
an initial value (also known as the lower bound).

NOTE: The loop initialization is performed
only the FIRST TIME that the for statement is reached.

Once a loop is underway,
that loop’s initialization DOESN’T get executed again.

We refer to each trip through the body of the loop as an iteration.

25
for Loop Lesson 1

CS1313 Spring 2025

for Loop Behavior #1

for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */

2. The loop continuation condition is evaluated, to check whether
the loop control variable (or loop counter or loop index)
hasn’t yet passed the final value (also known as the upper bound).
If the loop continuation condition evaluates to false (0), then
the for loop body is skipped, and the program continues on
from the first statement after the for loop’s block close.
But, if the loop continuation condition evaluates to true (1),
then enter the loop body.

We refer to each trip through the body of the loop as an iteration.

26
for Loop Lesson 1

CS1313 Spring 2025

for Loop Behavior #2

for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */

3. Each statement inside the loop body is executed in sequence.

We refer to each trip through the body of the loop as an iteration.

27
for Loop Lesson 1

CS1313 Spring 2025

for Loop Behavior #3

for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */

4. When the end of the loop body is reached (indicated by
the block close associated with the block open of
the for statement), the loop counter is changed by
the loop change statement, typically (though not always)
by incrementing.

We refer to each trip through the body of the loop as an iteration.

28
for Loop Lesson 1

CS1313 Spring 2025

for Loop Behavior #4

for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */

5. REPEAT from step 2.

(Step 1, the loop initialization, gets executed
ONLY THE FIRST TIME that the for statement is reached.)

We refer to each trip through the body of the loop as an iteration.

29
for Loop Lesson 1

CS1313 Spring 2025

for Loop Behavior #5

30
for Loop Lesson 1

CS1313 Spring 2025

int product = 1;
int count;
for (count = 1; count <= 5; count++) {
 product = product * count;
} /* for count */
The above program fragment behaves identically the same as:
 /* Program Trace */
int product = 1; /* product = 1 */
int count; /* count is undefined */
count = 1; /* count == 1, product == 1 */
product *= count; /* count == 1, product == 1 */
count++; /* count == 2, product == 1 */
product *= count; /* count == 2, product == 2 */
count++; /* count == 3, product == 3 */
product *= count; /* count == 3, product == 6 */
count++; /* count == 4, product == 6 */
product *= count; /* count == 4, product == 24 */
count++; /* count == 5, product == 24 */
product *= count; /* count == 5, product == 120 */
count++; /* count == 6, product == 120 */

for Loop Behavior #6

31
for Loop Lesson 1
CS1313 Spring 2025

If a count-controlled loop can be expressed as a while loop,
then why have for loops at all?
Imagine that a count-controlled loop has a very long loop body,
for example longer than a screenful of source code text.
In that case, the change statement (for example,
incrementing the loop counter variable) could be very far away
from the initialization and the condition.
In which case, looking at the while statement,
you couldn’t immediately understand its count-controlled behavior.
But by putting all of the count-control code in
a single for statement, you can look at just the for statement
and immediately understand the count-control behavior.

Why Have for Loops?

	for Loop Lesson 1 Outline
	A while Loop That Counts #1
	A while Loop That Counts #2
	A while Loop That Counts #3
	A while Loop That Counts #4
	Count-Controlled Loops #1
	Count-Controlled Loops #2
	Count-Controlled Loop Flowchart
	Arithmetic Assignment Operators #1
	Arithmetic Assignment Operators #2
	Jargon: Syntactic Sugar
	Increment & Decrement Operators #1
	x = x + 1 : Programmers vs Mathematicians
	Increment & Decrement Operators #2
	Increment & Decrement Operators #3
	Increment & Decrement Operators #4
	for Loop
	for Loop vs while Loop
	for Loop Flowchart
	Three Programs That Behave the Same #1
	Three Programs That Behave the Same #2
	Three Programs That Behave the Same #3
	Three Programs That Behave the Same #4
	for Loop Example
	for Loop Behavior #1
	for Loop Behavior #2
	for Loop Behavior #3
	for Loop Behavior #4
	for Loop Behavior #5
	for Loop Behavior #6
	Why Have for Loops?

