File I/O Lesson Outline

1. File I/O Lesson Outline 15.
2. File I/O Using Redirection #1 16.
3. File I/O Using Redirection #2 17.
4. Direct File I/O #1 18.
5. Direct File I/O #2 19.
6. File I/O Mode

7. FILE Pointer 20.
8. FILE Pointer == NULL #l 21

9. FILE Pointer == NULL #2 22

10. Reading from a File
11. Writing to a File

12. scanf vs fscanf/printf
vs fprintft

13. fclose
14. How to Use File I/O

Special File Pointers
stderr

Buftfering I/O

Buffering 1s Good! (Usually)

Buffering 1s Bad!
(Sometimes)

Why stderr is Good
. Using stderr
. Practical Considerations

File I/O Lesson
- CS1313 Spring 2025 1

File I/0 Using Redirection #1

So far in C, we’ve been using only
standard input (keyboard) and standard output (monitor).

We know that we can input from a file by redirecting the file

into standard input:
5 big statistics < actual 1.txt

Likewise, we can output to a file by redirecting standard output

into a file:
5 big statistics > actual 1 output. txt

File I/O Lesson
- CS1313 Spring 2025 2

File I/0 Using Redirection #2

In fact, we can combine redirected input with redirected output:
% big statistics < actual 1.txt \
> actual 1 output. txt

But what if we wanted to use multiple files at the same time?

For example, suppose we wanted to run a weather forecast,
and we had a file containing our 1nitial conditions
(for example, the observed weather at midnight) and
a different file containing data describing
the terrain of the continental US.

We want to input from both of these files. But how?

File I/O Lesson
' CS1313 Spring 2025

Direct File 1/0 #1

Most programming languages support reading and writing files
directly from within the program,

without having to use redirecting.
In C, we can gpen a file using the £open function:

char filename[filename length+l];
FILE* fileptr = (FILE*)NULL;

strcpy (filename, "actual 1.txt");
fileptr = fopen(filename, "r");

What does this mean?

File I/O Lesson
- CS1313 Spring 2025 4

Direct File 1/0 #2

char filename[filename length+1];
FILE* fileptr = (FILE*)NULL;

strcpy (filename, "actual 1.txt");
fileptr = fopen(filename, "r");

The fopen function opens a file in preparation for reading,
writing or appending to a file.

The first argument is a string representing the filename.
The second argument is a string that encodes the /0 mode.

File I/O Lesson
' CS1313 Spring 2025

File I/0O Mode

char filename[filename length+l];
FILE* fileptr = (FILE*)NULL;

strcpy (filename, "actual 1.txt");
fileptr = fopen(filename, "r");

The second argument is a string that encodes the I/O mode,
which can be:

s "r" :Open the file for reading.
s "w" :Open the file for writing.

s "a" :Open the file for appending (writing at the end of
an existing file).

File I/O Lesson
' CS1313 Spring 2025

FILE Pointer

char filename[filename length+1];
FILE* fileptr = (FILE*)NULL;

strcpy (filename, "actual 1.txt");
fileptr = fopen(filename, "r");

The function £open returns a file pointer, which 1s a pointer to
a special data type that’s used to 1dentify and describe a file.

File I/O Lesson
- CS1313 Spring 2025 7

FILE Pointer == NULL #1

char filename[filename length+1];
FILE* fileptr = (FILE*)NULL;

strcpy (filename, "actual 1.txt");
fileptr = fopen(filename, "r");

The function £open returns a file pointer, which 1s a pointer to
a special data type that’s used to 1dentify and describe a file.

If for some reason the file can’t be opened,
then the return value of fopen 1s NULL.

File I/O Lesson
- CS1313 Spring 2025 8

FILE Pointer == NULL #2

fileptr = fopen(filename, "r");

If for some reason the file can’t be opened,
then the return value of fopen 1s NULL.

1f (fileptr == NULL) {
printf ("ERROR: Can't open file %s to read.\n",
filename) ;
exit (program failure code);
} /* if (fileptr == NULL) */

File I/O Lesson
- CS1313 Spring 2025 9

Reading from a File

In C, we can read from a file using the function £scanf,
which 1s exactly like scanf
except that its first argument is a file pointer,
specifically the file pointer for the file to read from:

fscanf (fileptr, "%d", &number of elements);

File I/O Lesson
- CS1313 Spring 2025 10

Writing to a File

In C, we can write to a file using the function £printf,
which 1s exactly like printf
except that its first argument is a file pointer,
specifically the file pointer for the file to read from:

fprintf (fileptr,
"The number of elements is %d.\n",

number of elements);

File I/O Lesson
' CS1313 Spring 2025

11

scanf vs fscanf/printf vs fprintf

What’s the difference between scanf and fscanf, or
between printf and fprintf?

Well, scanf reads from stdin only,
whereas fscanf can read from any file.

Likewise, print f writes to stdout only,
whereas fprintf can write to any file.

In fact, some implementations of C
define scanf (...) as fscanf(stdin, ...),and
define printf (...) as fprintf (stdout, ...).

File I/O Lesson
- CS1313 Spring 2025 12

fclose

The C standard library also has a function named fclose
that takes a file pointer argument.

It closes the appropriate file and returns 0 if the file closed properly,
or an error code otherwise:

const 1int file_close_success = 0;

int file_close_status;

file close status = fclose(fileptr);
1f (file close status != file close success) {
printf ("ERROR: couldn't close the file %s.\n",
filename) ;
exlit (program failure code);

} /* 1if (file close status != file close success) */

File I/O Lesson
- CS1313 Spring 2025 13

How to Use File 1/O

FILE* fileptr = (FILE*)NULL;

fileptr = fopen(filename, "r");
if (fileptr == (FILE*)NULL) {

printf ("ERROR: Can't open file %s to read.\n",

exit (program failure code);

} /* if fileptr == (FILE*)NULL) */
fscanf (fileptr, "%d", &number of elements);
for (element = first element;

element < number of elements; element++)
fscanf (fileptr, "S%f Sf",
&input variablel [element],
&input variable2[element]) ;
} /* for element */
1f (fclose(fileptr) != file close success) {

filename) ;

printf ("ERROR: can't close file %s after reading.\n",

filename) ;
exit (program failure code);

} /* 1if (fclose(fileptr) != file close success) */

File I/O Lesson
' CS1313 Spring 2025

14

Special File Pointers

» In C, there are three special file pointers that exist all the

time, two of which are already old friends:
stdin, stdout and anew one, stderr.

s We already know this:

s scanf (...); means exactly the same as
scanf (stdin, ...):;

m printf (...); means exactly the same as
fprintf (stdout, ...);

m But what about stderr?

File I/O Lesson
- CS1313 Spring 2025 15

stderr

m [t turns out that stderr 1sused exactly like stdout,
except that you have touse fprintf touse stderr:

m fprintf (stderr, ...);

s There’s no equivalent of printf for stderr.
s Where does stderr go?

To the terminal screen, just like stdout.

s Okay, but then why do we need stderr atall,
if 1t behaves exactly like stdout,

except less convenient to use???

File I/O Lesson
' CS1313 Spring 2025

16

Buffering 1/0

s When you output to a file, there are two options:
1. Unbuffered output: The bytes that you output
go directly into the file you’re outputting to,
as soon as you write them.
2. Buffered output: The bytes that you output
wait in a special array in RAM
until there are enough bytes to justify spinning the disk drive.
Buffer: An array where data 1s temporarily held,

typically until a specific event occurs.

File I/O Lesson
- CS1313 Spring 2025 17

Buffering is Good! (Usually)

s When you have just a little bit of output,

it doesn’t matter whether you do buffered or unbuffered.
s When you have a lot of output,

buffered 1s much faster than unbuffered,

because you spin the disk drive less often.
s Unbuffered: Spin the disk every time fprintf is called.

s Buffered: Spin the disk only when the buffer is full.
s So, we should always buffer, right?

File I/O Lesson
- CS1313 Spring 2025 18

Buffering is Bad! (Sometimes)

s What if your program crashes while there’s data in the output
buffer that hasn’t gotten to disk yet?

m Lost forever and never recoverable!

= If you don’t know what your output should look like,
then you might not even notice that you’ve lost data
(which might be important data).

s So what’s the most important data that you shouldn’t buffer?
ERROR MESSAGES!

Therefore, error messages should be output unbuffered, so that they
go out before the program crashes.

File I/O Lesson
- CS1313 Spring 2025 19

Why stderr Is Good

m stdout: buffered
m stderr: unbuffered

n All other files: buffered by default,
unless you explicitly set them to be unbuffered.

File I/O Lesson
- CS1313 Spring 2025

20

Using stderr

1f (number of elements <
minimum number of elements) {

fprintf (stderr, "ERROR: you can't have a negative");

fprintf (stderr, " number of elements!\n");
exlit (program failure code);
} /* if (number of elements < ...) */

File I/O Lesson
- CS1313 Spring 2025 21

Practical Considerations

Opening a file or closing a file takes a long time,

so don’t open or close a file more often than necessary.
But, having too many files open can crash your code,
so don’t keep a file open longer than necessary:

don’t open the file until you need 1t, and

close 1t as soon as you no longer need it.

File I/O is VERY VERY SLOW compared to
calculations, so do as little file I/O as possible.
DON’T RE-READ the same file multiple times.
DON’T MIX file I/O and calculations together, because
then the calculations will also be VERY SLOW.

File I/O Lesson
- CS1313 Spring 2025 22

	File I/O Lesson Outline
	File I/O Using Redirection #1
	File I/O Using Redirection #2
	Direct File I/O #1
	Direct File I/O #2
	File I/O Mode
	FILE Pointer
	FILE Pointer == NULL #1
	FILE Pointer == NULL #2
	Reading from a File
	Writing to a File
	scanf vs fscanf/printf vs fprintf
	fclose
	How to Use File I/O
	Special File Pointers
	stderr
	Buffering I/O
	Buffering is Good! (Usually)
	Buffering is Bad! (Sometimes)
	Why stderr Is Good
	Using stderr
	Practical Considerations

