
File I/O Lesson Outline
1. File I/O Lesson Outline
2. File I/O Using Redirection #1
3. File I/O Using Redirection #2
4. Direct File I/O #1
5. Direct File I/O #2
6. File I/O Mode
7. FILE Pointer
8. FILE Pointer == NULL #1
9. FILE Pointer == NULL #2
10. Reading from a File
11. Writing to a File
12. scanf vs fscanf/printf

vs fprintf
13. fclose
14. How to Use File I/O

15. Special File Pointers
16. stderr
17. Buffering I/O
18. Buffering is Good! (Usually)
19. Buffering is Bad!

(Sometimes)
20. Why stderr is Good
21. Using stderr
22. Practical Considerations

File I/O Lesson
CS1313 Spring 2025 1

2File I/O Lesson
CS1313 Spring 2025

So far in C, we’ve been using only
standard input (keyboard) and standard output (monitor).

We know that we can input from a file by redirecting the file
into standard input:

% big_statistics < actual_1.txt

Likewise, we can output to a file by redirecting standard output
into a file:

% big_statistics > actual_1_output.txt

File I/O Using Redirection #1

3File I/O Lesson
CS1313 Spring 2025

In fact, we can combine redirected input with redirected output:
% big_statistics < actual_1.txt \
 > actual_1_output.txt

But what if we wanted to use multiple files at the same time?
For example, suppose we wanted to run a weather forecast,

and we had a file containing our initial conditions
(for example, the observed weather at midnight) and
a different file containing data describing
the terrain of the continental US.

We want to input from both of these files. But how?

File I/O Using Redirection #2

4File I/O Lesson
CS1313 Spring 2025

Most programming languages support reading and writing files
directly from within the program,
without having to use redirecting.

In C, we can open a file using the fopen function:
...
char filename[filename_length+1];
FILE* fileptr = (FILE*)NULL;
...
strcpy(filename, "actual_1.txt");
fileptr = fopen(filename, "r");
...
What does this mean?

Direct File I/O #1

5File I/O Lesson
CS1313 Spring 2025

...
char filename[filename_length+1];
FILE* fileptr = (FILE*)NULL;
...
strcpy(filename, "actual_1.txt");
fileptr = fopen(filename, "r");
...

The fopen function opens a file in preparation for reading,
writing or appending to a file.

The first argument is a string representing the filename.
The second argument is a string that encodes the I/O mode.

Direct File I/O #2

6File I/O Lesson
CS1313 Spring 2025

...
char filename[filename_length+1];
FILE* fileptr = (FILE*)NULL;
...
strcpy(filename, "actual_1.txt");
fileptr = fopen(filename, "r");
...
The second argument is a string that encodes the I/O mode,

which can be:
 "r" : Open the file for reading.
 "w" : Open the file for writing.
 "a" : Open the file for appending (writing at the end of

an existing file).

File I/O Mode

7File I/O Lesson
CS1313 Spring 2025

...
char filename[filename_length+1];
FILE* fileptr = (FILE*)NULL;
...
strcpy(filename, "actual_1.txt");
fileptr = fopen(filename, "r");
...

The function fopen returns a file pointer, which is a pointer to
a special data type that’s used to identify and describe a file.

FILE Pointer

8File I/O Lesson
CS1313 Spring 2025

...
char filename[filename_length+1];
FILE* fileptr = (FILE*)NULL;
...
strcpy(filename, "actual_1.txt");
fileptr = fopen(filename, "r");
...

The function fopen returns a file pointer, which is a pointer to
a special data type that’s used to identify and describe a file.

If for some reason the file can’t be opened,
then the return value of fopen is NULL.

FILE Pointer == NULL #1

9File I/O Lesson
CS1313 Spring 2025

fileptr = fopen(filename, "r");
...

If for some reason the file can’t be opened,
then the return value of fopen is NULL.

if (fileptr == NULL) {
 printf("ERROR: Can't open file %s to read.\n",
 filename);
 exit(program_failure_code);
} /* if (fileptr == NULL) */

FILE Pointer == NULL #2

10File I/O Lesson
CS1313 Spring 2025

In C, we can read from a file using the function fscanf,
which is exactly like scanf
except that its first argument is a file pointer,
specifically the file pointer for the file to read from:

fscanf(fileptr, "%d", &number_of_elements);

Reading from a File

11File I/O Lesson
CS1313 Spring 2025

In C, we can write to a file using the function fprintf,
which is exactly like printf
except that its first argument is a file pointer,
specifically the file pointer for the file to read from:

fprintf(fileptr,

 "The number of elements is %d.\n",

 number_of_elements);

Writing to a File

12File I/O Lesson
CS1313 Spring 2025

What’s the difference between scanf and fscanf, or
between printf and fprintf?

Well, scanf reads from stdin only,
whereas fscanf can read from any file.

Likewise, printf writes to stdout only,
whereas fprintf can write to any file.

In fact, some implementations of C
define scanf(...) as fscanf(stdin, ...), and
define printf(...) as fprintf(stdout, ...).

scanf vs fscanf/printf vs fprintf

13File I/O Lesson
CS1313 Spring 2025

The C standard library also has a function named fclose
that takes a file pointer argument.

It closes the appropriate file and returns 0 if the file closed properly,
or an error code otherwise:

const int file_close_success = 0;

int file_close_status;

...

file_close_status = fclose(fileptr);

if (file_close_status != file_close_success) {

 printf("ERROR: couldn't close the file %s.\n",

 filename);

 exit(program_failure_code);

} /* if (file_close_status != file_close_success) */

fclose

14File I/O Lesson
CS1313 Spring 2025

...
FILE* fileptr = (FILE*)NULL;
...
fileptr = fopen(filename, "r");
if (fileptr == (FILE*)NULL) {
 printf("ERROR: Can't open file %s to read.\n", filename);
 exit(program_failure_code);
} /* if fileptr == (FILE*)NULL) */
fscanf(fileptr, "%d", &number_of_elements);
for (element = first_element;
 element < number_of_elements; element++) {
 fscanf(fileptr, "%f %f",
 &input_variable1[element],
 &input_variable2[element]);
} /* for element */
if (fclose(fileptr) != file_close_success) {
 printf("ERROR: can't close file %s after reading.\n",
 filename);
 exit(program_failure_code);
} /* if (fclose(fileptr) != file_close_success) */
...

How to Use File I/O

Special File Pointers
 In C, there are three special file pointers that exist all the

time, two of which are already old friends:
stdin, stdout and a new one, stderr.

 We already know this:
 scanf(…); means exactly the same as
scanf(stdin, …);

 printf(…); means exactly the same as
fprintf(stdout, …);

 But what about stderr?

File I/O Lesson
CS1313 Spring 2025 15

stderr

 It turns out that stderr is used exactly like stdout,
except that you have to use fprintf to use stderr:
 fprintf(stderr, …);

 There’s no equivalent of printf for stderr.
 Where does stderr go?

To the terminal screen, just like stdout.
 Okay, but then why do we need stderr at all,

if it behaves exactly like stdout,
except less convenient to use???

File I/O Lesson
CS1313 Spring 2025 16

Buffering I/O
 When you output to a file, there are two options:

1. Unbuffered output: The bytes that you output
go directly into the file you’re outputting to,
as soon as you write them.

2. Buffered output: The bytes that you output
wait in a special array in RAM
until there are enough bytes to justify spinning the disk drive.

Buffer: An array where data is temporarily held,
typically until a specific event occurs.

File I/O Lesson
CS1313 Spring 2025 17

Buffering is Good! (Usually)
 When you have just a little bit of output,

it doesn’t matter whether you do buffered or unbuffered.
 When you have a lot of output,

buffered is much faster than unbuffered,
because you spin the disk drive less often.
 Unbuffered: Spin the disk every time fprintf is called.
 Buffered: Spin the disk only when the buffer is full.

 So, we should always buffer, right?

File I/O Lesson
CS1313 Spring 2025 18

Buffering is Bad! (Sometimes)
 What if your program crashes while there’s data in the output

buffer that hasn’t gotten to disk yet?
 Lost forever and never recoverable!
 If you don’t know what your output should look like,

then you might not even notice that you’ve lost data
(which might be important data).

 So what’s the most important data that you shouldn’t buffer?
ERROR MESSAGES!
Therefore, error messages should be output unbuffered, so that they
go out before the program crashes.

File I/O Lesson
CS1313 Spring 2025 19

Why stderr Is Good
 stdout: buffered
 stderr: unbuffered
 All other files: buffered by default,

unless you explicitly set them to be unbuffered.

File I/O Lesson
CS1313 Spring 2025 20

Using stderr
if (number_of_elements <
 minimum_number_of_elements) {
 fprintf(stderr, "ERROR: you can't have a negative");
 fprintf(stderr, " number of elements!\n");
 exit(program_failure_code);
} /* if (number_of_elements < ...) */

File I/O Lesson
CS1313 Spring 2025 21

Practical Considerations
 Opening a file or closing a file takes a long time,

so don’t open or close a file more often than necessary.
 But, having too many files open can crash your code,

so don’t keep a file open longer than necessary:
don’t open the file until you need it, and
close it as soon as you no longer need it.

 File I/O is VERY VERY SLOW compared to
calculations, so do as little file I/O as possible.

 DON’T RE-READ the same file multiple times.
 DON’T MIX file I/O and calculations together, because

then the calculations will also be VERY SLOW.

File I/O Lesson
CS1313 Spring 2025 22

	File I/O Lesson Outline
	File I/O Using Redirection #1
	File I/O Using Redirection #2
	Direct File I/O #1
	Direct File I/O #2
	File I/O Mode
	FILE Pointer
	FILE Pointer == NULL #1
	FILE Pointer == NULL #2
	Reading from a File
	Writing to a File
	scanf vs fscanf/printf vs fprintf
	fclose
	How to Use File I/O
	Special File Pointers
	stderr
	Buffering I/O
	Buffering is Good! (Usually)
	Buffering is Bad! (Sometimes)
	Why stderr Is Good
	Using stderr
	Practical Considerations

