
1
Constants Lesson
CS1313 Spring 2025

13. Why Numeric Literal Constants Are
BAD BAD BAD

14. 1997 Tax Program with Numeric
Literal Constants

15. 1999 Tax Program with Numeric
Literal Constants

16. Why Named Constants Are Good
17. 1997 Tax Program with Named

Constants
18. 1999 Tax Program with Named

Constants

1. Constants Lesson Outline
2. What is a Constant?
3. The Difference Between a

Variable and a Constant
4. Categories of Constants: Literal &

Named
5. Literal Constants
6. Literal Constant Example

Program #1
7. Literal Constant Example

Program #2
8. Literal Constant Example

Program #3
9. Literal Constant Example

Program #4
10. Named Constants
11. Name Constant Example Program
12. The Value of a Named Constant

Can’t Be Changed

Constants Lesson Outline

2
Constants Lesson
CS1313 Spring 2025

In mathematics, a constant is a value that cannot change.
In programming, a constant is like a variable,

EXCEPT its value cannot change.

What is a Constant?

3
Constants Lesson
CS1313 Spring 2025

The difference between a variable and a constant is:
 a variable’s value can vary,
but
 a constant’s value is constant.

Note that the variable can vary, and the constant’s value is constant,
at runtime.

The Difference Between a Variable and a Constant

4
Constants Lesson
CS1313 Spring 2025

There are two categories of constants:
 literal constants, whose values are expressed literally;
 named constants, which have names.

Categories of Constants: Literal & Named

5
Constants Lesson
CS1313 Spring 2025

A literal constant is a constant whose value is expressed literally:

 int literal constants
 EXAMPLES: 5, 0, -127, +403298, -385092809
 float literal constants
 EXAMPLES: 5.2, 0.0, -127.5, +403298.2348,
 -3.85092809e+08
 char literal constants
 EXAMPLES: 'A', '7', '?'
 character string literal constants
 EXAMPLES: "A", "Henry", "What's it to ya?"

Literal Constants

6
Constants Lesson
CS1313 Spring 2025

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1997 income.\n");
 printf("What was your 1997 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4150.0 + 2650.0)) * 0.15;
 printf("The 1997 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
 tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

Literal Constant Example Program #1

7
Constants Lesson
CS1313 Spring 2025

Numeric literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1997 income.\n");
 printf("What was your 1997 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4150.0 + 2650.0)) * 0.15;
 printf("The 1997 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
 tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

Literal Constant Example Program #2

8
Constants Lesson
CS1313 Spring 2025

Character string literal constants

Character string literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1997 income.\n");
 printf("What was your 1997 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4150.0 + 2650.0)) * 0.15;
 printf("The 1997 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
 tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

Literal Constant Example Program #3

9
Constants Lesson
CS1313 Spring 2025

Character string literal constants

Numeric literal constants

Character string literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1997 income.\n");
 printf("What was your 1997 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4150.0 + 2650.0)) * 0.15;
 printf("The 1997 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
 tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

Literal Constant Example Program #4

10
Constants Lesson
CS1313 Spring 2025

A named constant is a constant that has a name:
const float pi = 3.1415926;

 A named constant is exactly like a variable, except
its value is set at compile time (by initializing it) and
CANNOT change at runtime.

 A named constant is exactly like a literal constant, except
it HAS A NAME.

In a named constant declaration,
 we indicate that it’s a constant via the const attribute, and
 we MUST initialize the named constant.

Named Constants

11
Constants Lesson
CS1313 Spring 2025

% cat circlecalc.c
#include <stdio.h>

int main ()
{ /* main */
 const float pi = 3.1415926;
 const float diameter_factor = 2.0;
 float radius, circumference, area;

 printf("I'm going to calculate a circle's\n");
 printf(" circumference and area.\n");
 printf("What's the radius of the circle?\n");
 scanf("%f", &radius);
 circumference = pi * radius * diameter_factor;
 area = pi * radius * radius;
 printf("The circumference is %f\n", circumference);
 printf(" and the area is %f.\n", area);
} /* main */
% gcc -o circlecalc circlecalc.c
% circlecalc
I'm going to calculate a circle's
 circumference and area.
What's the radius of the circle?
5
The circumference is 31.415924
 and the area is 78.539810.

Name Constant Example Program

% cat constassign.c
#include <stdio.h>

int main ()
{ /* main */
 const float pi = 3.1415926;

 pi = 3.0;
} /* main */
% gcc -o constassign constassign.c
constassign.c: In function ‘main’:
constassign.c:7: error: assignment of read-only variable ‘pi’

You can’t change the value of a named constant at runtime!
This shows why you have to initialize every named constant:

if you didn’t initialize it, then its value would be garbage,
forever.

(By contrast, you DON’T have to initialize every variable.)
12

Constants Lesson
CS1313 Spring 2025

The Value of a Named Constant Can’t Be Changed

This WON’T WORK!

13
Constants Lesson
CS1313 Spring 2025

When you embed numeric literal constants in the body of your
program, you make it much harder to maintain and upgrade
your program.

Why Numeric Literal Constants Are BAD BAD BAD

14
Constants Lesson
CS1313 Spring 2025

% cat tax1997_literal.c
#include <stdio.h>

int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1997 income.\n");
 printf("What was your 1997 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4150.0 + 2650.0)) * 0.15;
 printf("The 1997 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
 tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

1997 Tax Program with Numeric Literal Constants

15
Constants Lesson
CS1313 Spring 2025

% cat tax1999_literal.c
#include <stdio.h>

int main ()
{ /* main */
 float income, tax;

 printf("I'm going to calculate the federal income\n");
 printf(" tax on your 1999 income.\n");
 printf("What was your 1999 income in dollars?\n");
 scanf("%f", &income);
 tax = (income - (4300.0 + 2750.0)) * 0.15;
 printf("The 1999 federal income tax on $%2.2f\n", income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1999_literal tax1999_literal.c
% tax1999_literal
I'm going to calculate the federal income
 tax on your 1999 income.
What was your 1999 income in dollars?
20000
The 1999 federal income tax on $20000.00
 was $1942.50.

1999 Tax Program with Numeric Literal Constants

16
Constants Lesson
CS1313 Spring 2025

When you use named constants in the body of your program
instead of literal constants,
you isolate the constant values in the declaration section,
making them trivial to find and to change.

Why Named Constants Are Good

17
Constants Lesson
CS1313 Spring 2025

% cat tax1997_named.c
#include <stdio.h>
int main ()
{ /* main */
 const float standard_deduction = 4150.0;
 const float single_exemption = 2650.0;
 const float tax_rate = 0.15;
 const int tax_year = 1997;
 float income, tax;
 printf("I'm going to calculate the federal income tax\n");
 printf(" on your %d income.\n", tax_year);
 printf("What was your %d income in dollars?\n", tax_year);
 scanf("%f", &income);
 tax = (income - (standard_deduction + single_exemption)) * tax_rate;
 printf("The %d federal income tax on $%2.2f\n", tax_year, income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_named tax1997_named.c
% tax1997_named
I'm going to calculate the federal income tax
 on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
 was $1980.00.

1997 Tax Program with Named Constants

18
Constants Lesson
CS1313 Spring 2025

% cat tax1999_named.c
#include <stdio.h>
int main ()
{ /* main */
 const float standard_deduction = 4300.0;
 const float single_exemption = 2750.0;
 const float tax_rate = 0.15;
 const int tax_year = 1999;
 float income, tax;
 printf("I'm going to calculate the federal income tax\n");
 printf(" on your %d income.\n", tax_year);
 printf("What was your %d income in dollars?\n", tax_year);
 scanf("%f", &income);
 tax = (income - (standard_deduction + single_exemption)) * tax_rate;
 printf("The %d federal income tax on $%2.2f\n", tax_year, income);
 printf(" was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1999_named tax1999_named.c
% tax1999_named
I'm going to calculate the federal income tax
 on your 1999 income.
What was your 1999 income in dollars?
20000
The 1999 federal income tax on $20000.00
 was $1942.50.

1999 Tax Program with Named Constants

	Constants Lesson Outline
	What is a Constant?
	The Difference Between a Variable and a Constant
	Categories of Constants: Literal & Named
	Literal Constants
	Literal Constant Example Program #1
	Literal Constant Example Program #2
	Literal Constant Example Program #3
	Literal Constant Example Program #4
	Named Constants
	Name Constant Example Program
	The Value of a Named Constant Can’t Be Changed
	Why Numeric Literal Constants Are BAD BAD BAD
	1997 Tax Program with Numeric Literal Constants
	1999 Tax Program with Numeric Literal Constants
	Why Named Constants Are Good
	1997 Tax Program with Named Constants
	1999 Tax Program with Named Constants

