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In mathematics,   a constant is a value that cannot change.
In programming, a constant is like a variable,           

EXCEPT its value cannot change.

What is a Constant?
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The difference between a variable and a constant is:
 a variable’s value can vary,
but
 a constant’s value is constant.

Note that the variable can vary, and the constant’s value is constant, 
at runtime.

The Difference Between a Variable and a Constant
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There are two categories of constants:
 literal  constants, whose values are expressed literally;
 named constants, which have names.

Categories of Constants: Literal & Named
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A literal constant is a constant whose value is expressed literally:

 int literal constants
 EXAMPLES: 5, 0, -127, +403298, -385092809
 float literal constants
 EXAMPLES: 5.2, 0.0, -127.5, +403298.2348, 
 -3.85092809e+08
 char literal constants
 EXAMPLES: 'A', '7', '?'
 character string literal constants
 EXAMPLES: "A", "Henry", "What's it to ya?"

Literal Constants



6
Constants Lesson
CS1313 Spring 2025

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1997 income.\n");
    printf("What was your 1997 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4150.0 + 2650.0)) * 0.15;
    printf("The 1997 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
  tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

Literal Constant Example Program #1
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Numeric literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1997 income.\n");
    printf("What was your 1997 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4150.0 + 2650.0)) * 0.15;
    printf("The 1997 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
  tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

Literal Constant Example Program #2
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Character string literal constants

Character string literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1997 income.\n");
    printf("What was your 1997 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4150.0 + 2650.0)) * 0.15;
    printf("The 1997 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
  tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

Literal Constant Example Program #3
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Character string literal constants

Numeric literal constants

Character string literal constants

% cat tax1997_literal.c
#include <stdio.h>
int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1997 income.\n");
    printf("What was your 1997 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4150.0 + 2650.0)) * 0.15;
    printf("The 1997 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
  tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

Literal Constant Example Program #4
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A named constant is a constant that has a name:
const float pi = 3.1415926;

 A named constant is exactly like a variable, except                
its value is set at compile time (by initializing it) and 
CANNOT change at runtime.

 A named constant is exactly like a literal constant, except      
it HAS A NAME.

In a named constant declaration,
 we indicate that it’s a constant via the const attribute, and
 we MUST initialize the named constant.

Named Constants
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% cat circlecalc.c
#include <stdio.h>

int main ()
{ /* main */
    const float pi              = 3.1415926;
    const float diameter_factor = 2.0;
    float radius, circumference, area;

    printf("I'm going to calculate a circle's\n");
    printf(" circumference and area.\n");
    printf("What's the radius of the circle?\n");
    scanf("%f", &radius);
    circumference = pi * radius * diameter_factor;
    area = pi * radius * radius;
    printf("The circumference is %f\n", circumference);
    printf(" and the area is %f.\n", area);
} /* main */
% gcc -o circlecalc circlecalc.c
% circlecalc
I'm going to calculate a circle's
 circumference and area.
What's the radius of the circle?
5
The circumference is 31.415924
 and the area is 78.539810.

Name Constant Example Program



% cat constassign.c
#include <stdio.h>

int main ()
{ /* main */
    const float pi = 3.1415926;

    pi = 3.0;
} /* main */
% gcc -o constassign constassign.c
constassign.c: In function ‘main’:
constassign.c:7: error: assignment of read-only variable ‘pi’

You can’t change the value of a named constant at runtime!
This shows why you have to initialize every named constant:                

if you didn’t initialize it, then its value would be garbage, 
forever.

(By contrast, you DON’T have to initialize every variable.)
12
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The Value of a Named Constant Can’t Be Changed

This WON’T WORK!
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When you embed numeric literal constants in the body of your 
program, you make it much harder to maintain and upgrade 
your program.

Why Numeric Literal Constants Are BAD BAD BAD
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% cat tax1997_literal.c
#include <stdio.h>

int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1997 income.\n");
    printf("What was your 1997 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4150.0 + 2650.0)) * 0.15;
    printf("The 1997 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_literal tax1997_literal.c
% tax1997_literal
I'm going to calculate the federal income
  tax on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

1997 Tax Program with Numeric Literal Constants



15
Constants Lesson
CS1313 Spring 2025

% cat tax1999_literal.c
#include <stdio.h>

int main ()
{ /* main */
    float income, tax;

    printf("I'm going to calculate the federal income\n");
    printf("  tax on your 1999 income.\n");
    printf("What was your 1999 income in dollars?\n");
    scanf("%f", &income);
    tax = (income - (4300.0 + 2750.0)) * 0.15;
    printf("The 1999 federal income tax on $%2.2f\n", income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1999_literal tax1999_literal.c
% tax1999_literal
I'm going to calculate the federal income
  tax on your 1999 income.
What was your 1999 income in dollars?
20000
The 1999 federal income tax on $20000.00
  was $1942.50.

1999 Tax Program with Numeric Literal Constants
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When you use named constants in the body of your program 
instead of literal constants,                                                  
you isolate the constant values in the declaration section, 
making them trivial to find and to change.

Why Named Constants Are Good
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% cat tax1997_named.c
#include <stdio.h>
int main ()
{ /* main */
    const float standard_deduction = 4150.0;
    const float single_exemption = 2650.0;
    const float tax_rate = 0.15;
    const int tax_year = 1997;
    float income, tax;
    printf("I'm going to calculate the federal income tax\n");
    printf("  on your %d income.\n", tax_year);
    printf("What was your %d income in dollars?\n", tax_year);
    scanf("%f", &income);
    tax = (income - (standard_deduction + single_exemption)) * tax_rate;
    printf("The %d federal income tax on $%2.2f\n", tax_year, income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1997_named tax1997_named.c
% tax1997_named
I'm going to calculate the federal income tax
  on your 1997 income.
What was your 1997 income in dollars?
20000
The 1997 federal income tax on $20000.00
  was $1980.00.

1997 Tax Program with Named Constants
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% cat tax1999_named.c
#include <stdio.h>
int main ()
{ /* main */
    const float standard_deduction = 4300.0;
    const float single_exemption = 2750.0;
    const float tax_rate = 0.15;
    const int tax_year = 1999;
    float income, tax;
    printf("I'm going to calculate the federal income tax\n");
    printf("  on your %d income.\n", tax_year);
    printf("What was your %d income in dollars?\n", tax_year);
    scanf("%f", &income);
    tax = (income - (standard_deduction + single_exemption)) * tax_rate;
    printf("The %d federal income tax on $%2.2f\n", tax_year, income);
    printf("  was $%2.2f.\n", tax);
} /* main */
% gcc -o tax1999_named tax1999_named.c
% tax1999_named
I'm going to calculate the federal income tax
  on your 1999 income.
What was your 1999 income in dollars?
20000
The 1999 federal income tax on $20000.00
  was $1942.50.

1999 Tax Program with Named Constants
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