
1Characters Lesson
CS1313 Spring 2025

19. A char is an int #1
20. A char is an int #2
21. Declaring char Scalar Variables #1
22. Declaring char Scalar Variables #2
23. char Like int Example
24. char Scalar Literal Constants
25. char Scalar Literal Constant Example
26. Using char Scalar Variables
27. Using char Scalar Variables Example
28. char Arrays #1
29. char Arrays #2
30. Character Array Example #1
31. Character Array Example #2

1. Characters Lesson Outline
2. Numeric Encoding of Non-numeric Data #1
3. Numeric Encoding of Non-numeric Data #2
4. Numeric Encoding of Non-numeric Data #2
5. Representing Characters
6. How Characters Are Represented #1
7. How Characters Are Represented #2
8. Representing Digits
9. Representing Punctuation
10. ASCII
11. ASCII Table #1
12. ASCII Table #2
13. ASCII Table #3
14. ASCII Table #4
15. ASCII Confirmation Program #1
16. ASCII Confirmation Program #2
17. ASCII Confirmation Program #3
18. ASCII Confirmation Program #4

Characters Lesson Outline

2Characters Lesson
CS1313 Spring 2025

In Programming Project #4, we encoded (represented)
entree options using integer values.

For example:
1. burger
2. chicken sandwich
3. fish sandwich
If we wanted, we could add other entree options.
For example:
4. vegan burger
5. chicken nuggets

Numeric Encoding of Non-numeric Data #1

3Characters Lesson
CS1313 Spring 2025

1. burger
2. chicken sandwich
3. fish sandwich
4. vegan burger
5. chicken nuggets...
The numbers in these cases have no standard meaning

with respect to the items that they encode;
they’ve been chosen essentially at random.

Numeric Encoding of Non-numeric Data #2

4Characters Lesson
CS1313 Spring 2025

1. burger
2. chicken sandwich
3. fish sandwich
4. vegan burger
5. chicken nuggets...
So, we see that we can encode qualitative (non-numeric) values

with quantitative (numeric) values,
using arbitrary but fixed and distinct numeric values
to encode a set of qualities.

That is, the code values can be any int values, but:
 they can’t change at runtime;
 the same int value can’t be used to encode two different things.

Numeric Encoding of Non-numeric Data #3

5Characters Lesson
CS1313 Spring 2025

What’s the most important set of non-numeric values
in computing?

It’s the one that allows the computer to communicate with us
in a way that makes sense to actual real live human beings:
natural language.

The most efficient way for computers to communicate in a
natural language is by writing.

Writing is based on characters.
Characters are non-numeric.
So, we want a way to encode characters numerically.

Representing Characters

6Characters Lesson
CS1313 Spring 2025

Here’s a code you might have used to play secret code games
when you were a kid:

'A' = 1, 'B' = 2, 'C' = 3, 'D' = 4, . . ., 'Z' = 26
Now that you’ve grown up and taken CS1313, you realize that

the numbers that you choose can be arbitrary, as long as
they’re fixed and distinct.

So you could just as easily choose:
'A' = 65, 'B' = 66, 'C' = 67, 'D' = 68, . . ., 'Z' = 90
This is a perfectly reasonable encoding, if the only characters

that you care about are upper case letters.
What about lower case?

How Characters Are Represented #1

7Characters Lesson
CS1313 Spring 2025

'A' = 65, 'B' = 66, 'C' = 67, 'D' = 68, . . ., 'Z' = 90
What about lower case?
Well, you could add, for example:
'a' = 97, 'b' = 98, 'c' = 99, 'd' = 100, . . ., 'z' = 122
(Arbitrary, fixed, distinct.)

Are these the only characters that you need?

How Characters Are Represented #2

8Characters Lesson
CS1313 Spring 2025

Another kind of very important character is a digit.
Here’s a possible encoding of the decimal digits:
'0' = 48, '1' = 49, '2' = 50, '3' = 51, . . ., '9' = 57
Notice that there’s an important distinction between

the character to be represented,
which happens to be a digit,
and the numeric encoding,
whose value DOESN’T have to have anything to do with
the value of the digit being encoded.

(Arbitrary, fixed, distinct.)

Representing Digits

9Characters Lesson
CS1313 Spring 2025

In addition to the upper case letters, the lower case letters and
the digits, we also need to encode special characters such as
punctuation.

This is starting to get pretty complicated,
so maybe it’d help to have a standardized system.

Representing Punctuation

10Characters Lesson
CS1313 Spring 2025

The American Standard Code for Information Interchange
(ASCII)* is a standardized system for encoding characters
numerically.

It has several categories of characters:
 letters:

 upper case ('A' = 65 through 'Z' = 90);
 lower case ('a' = 97 through 'z' = 122);

 digits ('0' = 48 through '9' = 57);
 punctuation

 space = ' ' 32 through slash ' / ' = 47;
 Colon ' : ' = 58 through at sign ' @ ' = 64;
 open square bracket '[' = 91 through backquote ' ` ' = 96;
 open curly brace '{' = 123 through tilde ' ~ ' = 126;

 control characters, encoded as 0 through 31; also DEL
(encoded as 127).

* http://www.asciitable.com/

ASCII

http://www.asciitable.com/

11Characters Lesson
CS1313 Spring 2025

Code Char Kbd Name Code Char Kbd Name
0 NUL Null 16 DLE Ctrl-P Data Line Escape

1 SOH Ctrl-A Start of Heading 17 DC1 Ctrl-Q Device Control 1

2 STX Ctrl-B Start of Text 18 DC2 Ctrl-R Device Control 2

3 ETX Ctrl-C End of Text 19 DC3 Ctrl-S Device Control 3

4 EOT Ctrl-D End of Transmission 20 DC4 Ctrl-T Device Control 4

5 ENQ Ctrl-E Enquiry 21 NAK Ctrl-U Negative Acknowledge

6 ACK Ctrl-F Acknowledge 22 SYN Ctrl-V Synchronous File

7 BEL Ctrl-G Ring Bell 23 ETB Ctrl-W End Transmission Block

8 BS Ctrl-H Backspace 24 CAN Ctrl-X Cancel

9 HT Ctrl-I Horizontal Tab 25 EM Ctrl-Y End of Medium

10 LF Ctrl-J Line Feed 26 SUB Ctrl-Z Substitute

11 VT Ctrl-K Vertical Tab 27 ESC Ctrl-Shift-K Escape

12 FF Ctrl-L Form Feed 28 FS Ctrl-Shift-L File Separator

13 CR Ctrl-M Carriage Return 29 GS Ctrl-Shift-M Group Separator

14 SO Ctrl-N Shift Out 30 RS Ctrl-Shift-N Record Separator

15 SI Ctrl-O Shift In 31 US Ctrl-Shift-O Unit Separator

ASCII Table #1

12Characters Lesson
CS1313 Spring 2025

Code Char Name Code Char Name

32 Blank space 48 0

33 ! Exclamation point (or “bang”) 49 1

34 " Double quote 50 2

35 # Pound (or hash) 51 3

36 $ Dollar sign (or “buck”) 52 4

37 % Percent 53 5

38 & Ampersand (or “and”) 54 6

39 ' Single quote 55 7

40 (Open parenthesis 56 8

41) Close parenthesis 57 9

42 * Asterisk (or “star”) 58 : Colon

43 + Plus 59 ; Semicolon

44 , Comma 60 < Less than

45 - Hyphen 61 = Equals Sign

46 . Period (or “dot”) 62 > Greater than

47 / Slash 63 ? Question mark

ASCII Table #2

13Characters Lesson
CS1313 Spring 2025

Code Char Name Code Char Name

64 @ At 80 P

65 A 81 Q

66 B 82 R

67 C 83 S

68 D 84 T

69 E 85 U

70 F 86 V

71 G 87 W

72 H 88 X

73 I 89 Y

74 J 90 Z

75 K 91 [Open square bracket

76 L 92 \ Backslash (or “bash”)

77 M 93] Close square bracket

78 N 94 ^ Caret (or “fang”)

79 O 95 _ Underscore

ASCII Table #3

14Characters Lesson
CS1313 Spring 2025

Code Char Name Code Char Name

96 ` Accent grave 112 p

97 a 113 q

98 b 114 r

99 c 115 s

100 d 116 t

101 e 117 u

102 f 118 v

103 g 119 w

104 h 120 x

105 i 121 y

106 j 122 z

107 k 123 { Open curly brace

108 l 124 | Vertical bar (or “bar”)

109 m 125 } Close curly brace

110 n 126 ~ Tilde

111 o 127 DEL Delete

ASCII Table #4

15Characters Lesson
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int first_printable_character_code = 32;
 const int last_printable_character_code = 126;
 const int program_success_code = 0;
 int index;

 for (index = first_printable_character_code;
 index <= last_printable_character_code;
 index++) {
 printf("ASCII Code #%3d is: %c\n",
 index, index);
 } /* for index */
 return program_success_code;
} /* main */

ASCII Confirmation Program #1

16Characters Lesson
CS1313 Spring 2025

ASCII Code # 48 is: 0
ASCII Code # 49 is: 1
ASCII Code # 50 is: 2
ASCII Code # 51 is: 3
ASCII Code # 52 is: 4
ASCII Code # 53 is: 5
ASCII Code # 54 is: 6
ASCII Code # 55 is: 7
ASCII Code # 56 is: 8
ASCII Code # 57 is: 9
ASCII Code # 58 is: :
ASCII Code # 59 is: ;
ASCII Code # 60 is: <
ASCII Code # 61 is: =
ASCII Code # 62 is: >
ASCII Code # 63 is: ?

% gcc -o asciitest asciitest.c
% asciitest
ASCII Code # 32 is:
ASCII Code # 33 is: !
ASCII Code # 34 is: "
ASCII Code # 35 is: #
ASCII Code # 36 is: $
ASCII Code # 37 is: %
ASCII Code # 38 is: &
ASCII Code # 39 is: '
ASCII Code # 40 is: (
ASCII Code # 41 is:)
ASCII Code # 42 is: *
ASCII Code # 43 is: +
ASCII Code # 44 is: ,
ASCII Code # 45 is: -
ASCII Code # 46 is: .
ASCII Code # 47 is: /

ASCII Confirmation Program #2

17Characters Lesson
CS1313 Spring 2025

ASCII Code # 80 is: P
ASCII Code # 81 is: Q
ASCII Code # 82 is: R
ASCII Code # 83 is: S
ASCII Code # 84 is: T
ASCII Code # 85 is: U
ASCII Code # 86 is: V
ASCII Code # 87 is: W
ASCII Code # 88 is: X
ASCII Code # 89 is: Y
ASCII Code # 90 is: Z
ASCII Code # 91 is: [
ASCII Code # 92 is: \
ASCII Code # 93 is:]
ASCII Code # 94 is: ^
ASCII Code # 95 is: _

ASCII Code # 64 is: @
ASCII Code # 65 is: A
ASCII Code # 66 is: B
ASCII Code # 67 is: C
ASCII Code # 68 is: D
ASCII Code # 69 is: E
ASCII Code # 70 is: F
ASCII Code # 71 is: G
ASCII Code # 72 is: H
ASCII Code # 73 is: I
ASCII Code # 74 is: J
ASCII Code # 75 is: K
ASCII Code # 76 is: L
ASCII Code # 77 is: M
ASCII Code # 78 is: N
ASCII Code # 79 is: O

ASCII Confirmation Program #3

18Characters Lesson
CS1313 Spring 2025

ASCII Code #112 is: p
ASCII Code #113 is: q
ASCII Code #114 is: r
ASCII Code #115 is: s
ASCII Code #116 is: t
ASCII Code #117 is: u
ASCII Code #118 is: v
ASCII Code #119 is: w
ASCII Code #120 is: x
ASCII Code #121 is: y
ASCII Code #122 is: z
ASCII Code #123 is: {
ASCII Code #124 is: |
ASCII Code #125 is: }
ASCII Code #126 is: ~

ASCII Code # 96 is: ‘
ASCII Code # 97 is: a
ASCII Code # 98 is: b
ASCII Code # 99 is: c
ASCII Code #100 is: d
ASCII Code #101 is: e
ASCII Code #102 is: f
ASCII Code #103 is: g
ASCII Code #104 is: h
ASCII Code #105 is: i
ASCII Code #106 is: j
ASCII Code #107 is: k
ASCII Code #108 is: l
ASCII Code #109 is: m
ASCII Code #110 is: n
ASCII Code #111 is: o

ASCII Confirmation Program #4

19Characters Lesson
CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int first_printable_character_code = 32;
 const int last_printable_character_code = 126;
 const int program_success_code = 0;
 int index;
 for (index = first_printable_character_code;
 index <= last_printable_character_code;
 index++) {
 printf("ASCII Code #%3d is: %c\n",
 index, index);
 } /* for index */
 return program_success_code;
} /* main */

Notice that the variable named index is declared as an int,
but in the printf statement, index can be used
not only as an int but also as a char.
The reverse is also true.

A char is an int #1

20Characters Lesson
CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int program_success_code = 0;
 const char first_printable_character_code = 32;
 const char last_printable_character_code = 126;
 char index;
 for (index = first_printable_character_code;
 index <= last_printable_character_code;
 index++) {
 printf("ASCII Code #%3d is: %c\n",
 index, index);
 } /* for index */
 return program_success_code;
} /* main */

Notice that the variable named index is declared as a char,
but in the printf statement, index can be used
not only as a char but also as an int.
The reverse is also true.

A char is an int #2

21Characters Lesson
CS1313 Spring 2025

first_initial :

Here’s a declaration of a char scalar variable:
char first_initial;

This declaration tells the compiler to grab a group of bytes,
name them first_initial, and think of them as
storing a char.

How many bytes in a char scalar?
Each char scalar takes one byte:

Declaring char Scalar Variables #1

22

char first_initial;

REMEMBER: A char is just like an int,
except that it uses fewer bytes:
typically, a char is 1 byte and an int is 4 bytes.

So, we can use char variables and constants in
exactly the same ways that we use int variables and constants.

first_initial :

Characters Lesson
CS1313 Spring 2025

Declaring char Scalar Variables #2

23Characters Lesson
CS1313 Spring 2025

% cat charadd.c
#include <stdio.h>

int main ()
{ /* main */
 const int program_success_code = 0;
 int addend, augend;
 char sum;

 printf("What are the addend and augend?\n");
 scanf("%d %d", &addend, &augend);
 sum = addend + augend;
 printf("The sum is %d.\n", sum);
 return program_success_code;
} /* main */
% gcc -o charadd charadd.c
% charadd
What are the addend and augend?
1 4
The sum is 5.

char Like int Example

24Characters Lesson
CS1313 Spring 2025

A character scalar literal constant is a single char
enclosed in single quotes:

'H'
Note that

'''
is illegal.
However, you can also represent an individual char literal

using the octal (base 8) code that represents it.
For example, the apostrophe character corresponds to ASCII

code 39 decimal, which converts to 47 octal. (We’ll learn
about octal – base 8 – soon.)

So we can represent the apostrophe character like so:
'\047'

char Scalar Literal Constants

25Characters Lesson
CS1313 Spring 2025

% cat apostrophe.c
#include <stdio.h>

int main ()
{ /* main */
 const int program_success_code = 0;

 printf("Apostrophe: %c\n", '\047');
 return program_success_code;
} /* main */
% gcc -o apostrophe apostrophe.c
% apostrophe
Apostrophe: '

char Scalar Literal Constant Example

26Characters Lesson
CS1313 Spring 2025

In C, we can use char scalar variables
in many of the same ways that we use int scalar variables.
As we saw, for example, we can declare them:

char first_initial;
We can also assign char scalar values to char scalar variables,

by enclosing them in single quotes:
first_initial = 'H';

We can output char scalar values from char scalar variables,
like so:

 printf("My first initial is %c.\n",

 first_initial);

Using char Scalar Variables

27Characters Lesson
CS1313 Spring 2025

% cat charscalar.c
#include <stdio.h>
int main ()
{ /* main */
 const char computers_favorite_character = 'q';
 const int program_success_code = 0;
 char users_favorite_character;
 printf("What is your favorite character?\n");
 scanf("%c", &users_favorite_character);
 printf("Your favorite character is '%c'.\n",
 users_favorite_character);
 printf("My favorite character is '%c'.\n",
 computers_favorite_character);
 return program_success_code;
} /* main */
% gcc -o charscalar charscalar.c
% charscalar
What is your favorite character?
Z
Your favorite character is 'Z'.
My favorite character is 'q'.

Using char Scalar Variables Example

28Characters Lesson
CS1313 Spring 2025

In C, you can have an array of type char, just as you can
have arrays of numeric types:

char my_name[12];

We can fill this char array with characters and be able to
print them out.

char Arrays #1

29Characters Lesson
CS1313 Spring 2025

Is this a good solution?

my_name[0] = 'H';
my_name[1] = 'e';
my_name[2] = 'n';
my_name[3] = 'r';
my_name[4] = 'y';
my_name[5] = ' ';
my_name[6] = 'N';
my_name[7] = 'e';
my_name[8] = 'e';
my_name[9] = 'm';
my_name[10] = 'a';
my_name[11] = 'n';

char Arrays #2

30Characters Lesson
CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int my_name_length = 12;
 char my_name[my_name_length];
 int index;
 my_name[0] = 'H';
 my_name[1] = 'e';
 my_name[2] = 'n';
 my_name[3] = 'r';
 my_name[4] = 'y';
 my_name[5] = ' ';
 my_name[6] = 'N';
 my_name[7] = 'e';
 my_name[8] = 'e';
 my_name[9] = 'm';
 my_name[10] = 'a';
 my_name[11] = 'n';
 printf("My name is ");
 for (index = 0; index < my_name_length; index++) {
 printf("%c", my_name[index]);
 } /* for index */
 printf(".\n");
 return 0;
} /* main */

Character Array Example #1

31Characters Lesson
CS1313 Spring 2025

% gcc -o chararray chararray.c
% chararray
My name is Henry Neeman.

This is an improvement, but it’s still not an efficient way to
assign a sequence of characters to a variable.

What we want is a kind of char variable whose use will be
convenient for inputting, outputting and using sequences of
characters.

Character Array Example #2

	Characters Lesson Outline
	Numeric Encoding of Non-numeric Data #1
	Numeric Encoding of Non-numeric Data #2
	Numeric Encoding of Non-numeric Data #3
	Representing Characters
	How Characters Are Represented #1
	How Characters Are Represented #2
	Representing Digits
	Representing Punctuation
	ASCII
	ASCII Table #1
	ASCII Table #2
	ASCII Table #3
	ASCII Table #4
	ASCII Confirmation Program #1
	ASCII Confirmation Program #2
	ASCII Confirmation Program #3
	ASCII Confirmation Program #4
	A char is an int #1
	A char is an int #2
	Declaring char Scalar Variables #1
	Declaring char Scalar Variables #2
	char Like int Example
	char Scalar Literal Constants
	char Scalar Literal Constant Example
	Using char Scalar Variables
	Using char Scalar Variables Example
	char Arrays #1
	char Arrays #2
	Character Array Example #1
	Character Array Example #2

