
Characters & Strings Lesson 1
CS1313 Fall 2016 1

Characters & Strings Lesson 1 Outline
1. Characters & Strings Lesson 1 Outline
2. Numeric Encoding of Non-numeric Data #1
3. Numeric Encoding of Non-numeric Data #2
4. Representing Characters
5. How Characters Are Represented #1
6. How Characters Are Represented #2
7. Representing Digits
8. Representing Punctuation
9. ASCII
10. ASCII Table #1
11. ASCII Table #2
12. ASCII Table #3
13. ASCII Table #4
14. ASCII Confirmation Program #1
15. ASCII Confirmation Program #2
16. ASCII Confirmation Program #3
17. ASCII Confirmation Program #4

18. A char is an int #1
19. A char is an int #2
20. Declaring char Scalar Variables #1
21. Declaring char Scalar Variables #2
22. char Like int Example
23. char Scalar Literal Constants
24. char Scalar Literal Constant Example
25. Using char Scalar Variables
26. Using char Scalar Variables Example
27. charArrays #1
28. charArrays #2
29. Character Array Example #1
30. Character Array Example #2
31. Character Strings #1
32. String Terminator
33. Character String Assignment Example #1
34. Character String Assignment Example #2

Characters & Strings Lesson 1
CS1313 Fall 2016 2

In Programming Project #4, we encoded (represented) the
cloud types using integer values:

1. cirrus
2. cumulus
3. stratus
4. alto-stratus
5. alto-cumulus
6. cirro-stratus
7. cirro-cumulus
8. cumulo-nimbus
9. strato-cumulus
If we wanted to add other items, for example:
10. nimbus
11. strato-nimbus

Numeric Encoding of Non-numeric Data #1

Characters & Strings Lesson 1
CS1313 Fall 2016 3

1. cirrus
2. cumulus
3. stratus...
The numbers in these cases have no standard meaning with

respect to the items that they encode; they’ve been chosen
essentially at random.

So, we see that we can encode qualitative (non-numeric) values
with quantitative (numeric) values, using arbitrary but
distinct numeric values to encode a set of qualities.

Numeric Encoding of Non-numeric Data #2

Characters & Strings Lesson 1
CS1313 Fall 2016 4

Representing Characters
What’s the most important set of non-numeric values in

computing?
It’s the one that allows the computer to communicate with us

in a way that makes sense to actual real live human beings:
natural language.

The most efficient way for computers to communicate in a
natural language is by writing.

Writing is based on characters.
Characters are non-numeric.
So, we want a way to encode characters numerically.

Characters & Strings Lesson 1
CS1313 Fall 2016 5

How Characters Are Represented #1
Here’s a code you might have used to play secret code games

when you were a kid:
'A' = 1, 'B' = 2, 'C' = 3, 'D' = 4, . . ., 'Z' = 26
Now that you’ve grown up and taken CS1313, you realize that

the numbers that you choose can be arbitrary, as long as
they’re fixed and distinct.

So you could just as easily choose:
'A' = 65, 'B' = 66, 'C' = 67, 'D' = 68, . . ., 'Z' = 90
This is a perfectly reasonable encoding, if the only characters

that you care about are upper case letters.
What about lower case?

Characters & Strings Lesson 1
CS1313 Fall 2016 6

How Characters Are Represented #2
'A' = 65, 'B' = 66, 'C' = 67, 'D' = 68, . . ., 'Z' = 90
What about lower case?
Well, you could add, for example:
'a' = 97, 'b' = 98, 'c' = 99, 'd' = 100, . . ., 'z' = 122
Are these the only characters that you need?

Characters & Strings Lesson 1
CS1313 Fall 2016 7

Representing Digits
Another kind of very important character is a digit.
Here’s a possible encoding of the decimal digits:
'0' = 48, '1' = 49, '2' = 50, '3' = 51, . . ., '9' = 57
Notice that there’s an important distinction between the

character to be represented, which happens to be a digit,
and the numeric encoding, whose value doesn’t have to
have anything to do with the value of the digit being
encoded.

Characters & Strings Lesson 1
CS1313 Fall 2016 8

Representing Punctuation
In addition to the upper case letters, the lower case letters and

the digits, we also need to encode special characters such as
punctuation.

This is starting to get pretty complicated, so maybe it’d help to
have a standardized system.

Characters & Strings Lesson 1
CS1313 Fall 2016 9

ASCII
The American Standard Code for Information Interchange

(ASCII)* is a standardized system for encoding characters
numerically.

It has several categories of characters:
 letters:

 upper case ('A' = 65 through 'Z' = 90);
 lower case ('a' = 97 through 'z' = 122);

 digits ('0' = 48 through '9' = 57);
 punctuation

 space = 32 through slash = 47;
 colon = 58 through at sign = 64;
 open square bracket = 91 through backquote = 96;
 open curly brace = 123 through tilde = 126;

 control characters, encoded as 0 through 31; also DEL
(encoded as 127).

* http://www.asciitable.com/

http://www.asciitable.com/

Characters & Strings Lesson 1
CS1313 Fall 2016 10

ASCII Table #1
Code Char Kbd Name Code Char Kbd Name
0 NUL Null 16 DLE Ctrl-P Data Line Escape

1 SOH Ctrl-A Start of Heading 17 DC1 Ctrl-Q Device Control 1

2 STX Ctrl-B Start of Text 18 DC2 Ctrl-R Device Control 2

3 ETX Ctrl-C End of Text 19 DC3 Ctrl-S Device Control 3

4 EOT Ctrl-D End of Transmission 20 DC4 Ctrl-T Device Control 4

5 ENQ Ctrl-E Enquiry 21 NAK Ctrl-U Negative Acknowledge

6 ACK Ctrl-F Acknowledge 22 SYN Ctrl-V Synchronous File

7 BEL Ctrl-G Ring Bell 23 ETB Ctrl-W End Transmission Block

8 BS Ctrl-H Backspace 24 CAN Ctrl-X Cancel

9 HT Ctrl-I Horizontal Tab 25 EM Ctrl-Y End of Medium

10 LF Ctrl-J Line Feed 26 SUB Ctrl-Z Substitute

11 VT Ctrl-K Vertical Tab 27 ESC Ctrl-Shift-K Escape

12 FF Ctrl-L Form Feed 28 FS Ctrl-Shift-L File Separator

13 CR Ctrl-M Carriage Return 29 GS Ctrl-Shift-M Group Separator

14 SO Ctrl-N Shift Out 30 RS Ctrl-Shift-N Record Separator

15 SI Ctrl-O Shift In 31 US Ctrl-Shift-O Unit Separator

Characters & Strings Lesson 1
CS1313 Fall 2016 11

ASCII Table #2
Code Char Name Code Char Name

32 Blank space 48 0

33 ! Exclamation point 49 1

34 " Double quote 50 2

35 # Pound 51 3

36 $ Dollar sign 52 4

37 % Percent 53 5

38 & Ampersand 54 6

39 ' Single quote 55 7

40 (Open parenthesis 56 8

41) Close parenthesis 57 9

42 * Asterisk 58 : Colon

43 + Plus 59 ; Semicolon

44 , Comma 60 < Less than

45 - Hyphen 61 = Equals

46 . Period 62 > Greater than

47 / Slash 63 ? Question mark

Characters & Strings Lesson 1
CS1313 Fall 2016 12

ASCII Table #3
Code Char Name Code Char Name

64 @ At 80 P

65 A 81 Q

66 B 82 R

67 C 83 S

68 D 84 T

69 E 85 U

70 F 86 V

71 G 87 W

72 H 88 X

73 I 89 Y

74 J 90 Z

75 K 91 [Open square bracket

76 L 92 \ Backslash

77 M 93] Close square bracket

78 N 94 ^ Caret

79 O 95 _ Underscore

Characters & Strings Lesson 1
CS1313 Fall 2016 13

ASCII Table #4
Code Char Name Code Char Name

96 ` Accent grave 112 p

97 a 113 q

98 b 114 r

99 c 115 s

100 d 116 t

101 e 117 u

102 f 118 v

103 g 119 w

104 h 120 x

105 i 121 y

106 j 122 z

107 k 123 { Open curly brace

108 l 124 | Vertical bar

109 m 125 } Close curly brace

110 n 126 ~ Tilde

111 o 127 DEL Delete

Characters & Strings Lesson 1
CS1313 Fall 2016 14

ASCII Confirmation Program #1
#include <stdio.h>

int main ()
{ /* main */

const int first_printable_character_code = 32;
const int last_printable_character_code = 126;
const int program_success_code = 0;
int index;

for (index = first_printable_character_code;
index <= last_printable_character_code;
index++) {

printf("ASCII Code #%3d is: %c\n",
index, index);

} /* for index */
return program_success_code;

} /* main */

Characters & Strings Lesson 1
CS1313 Fall 2016 15

ASCII Confirmation Program #2
% gcc -o asciitest asciitest.c
% asciitest
ASCII Code # 32 is:
ASCII Code # 33 is: !
ASCII Code # 34 is: "
ASCII Code # 35 is: #
ASCII Code # 36 is: $
ASCII Code # 37 is: %
ASCII Code # 38 is: &
ASCII Code # 39 is: '
ASCII Code # 40 is: (
ASCII Code # 41 is:)
ASCII Code # 42 is: *
ASCII Code # 43 is: +
ASCII Code # 44 is: ,
ASCII Code # 45 is: -
ASCII Code # 46 is: .
ASCII Code # 47 is: /

ASCII Code # 48 is: 0
ASCII Code # 49 is: 1
ASCII Code # 50 is: 2
ASCII Code # 51 is: 3
ASCII Code # 52 is: 4
ASCII Code # 53 is: 5
ASCII Code # 54 is: 6
ASCII Code # 55 is: 7
ASCII Code # 56 is: 8
ASCII Code # 57 is: 9
ASCII Code # 58 is: :
ASCII Code # 59 is: ;
ASCII Code # 60 is: <
ASCII Code # 61 is: =
ASCII Code # 62 is: >
ASCII Code # 63 is: ?

Characters & Strings Lesson 1
CS1313 Fall 2016 16

ASCII Confirmation Program #3

ASCII Code # 64 is: @
ASCII Code # 65 is: A
ASCII Code # 66 is: B
ASCII Code # 67 is: C
ASCII Code # 68 is: D
ASCII Code # 69 is: E
ASCII Code # 70 is: F
ASCII Code # 71 is: G
ASCII Code # 72 is: H
ASCII Code # 73 is: I
ASCII Code # 74 is: J
ASCII Code # 75 is: K
ASCII Code # 76 is: L
ASCII Code # 77 is: M
ASCII Code # 78 is: N
ASCII Code # 79 is: O

ASCII Code # 80 is: P
ASCII Code # 81 is: Q
ASCII Code # 82 is: R
ASCII Code # 83 is: S
ASCII Code # 84 is: T
ASCII Code # 85 is: U
ASCII Code # 86 is: V
ASCII Code # 87 is: W
ASCII Code # 88 is: X
ASCII Code # 89 is: Y
ASCII Code # 90 is: Z
ASCII Code # 91 is: [
ASCII Code # 92 is: \
ASCII Code # 93 is:]
ASCII Code # 94 is: ^
ASCII Code # 95 is: _

Characters & Strings Lesson 1
CS1313 Fall 2016 17

ASCII Confirmation Program #4

ASCII Code # 96 is: ‘
ASCII Code # 97 is: a
ASCII Code # 98 is: b
ASCII Code # 99 is: c
ASCII Code #100 is: d
ASCII Code #101 is: e
ASCII Code #102 is: f
ASCII Code #103 is: g
ASCII Code #104 is: h
ASCII Code #105 is: i
ASCII Code #106 is: j
ASCII Code #107 is: k
ASCII Code #108 is: l
ASCII Code #109 is: m
ASCII Code #110 is: n
ASCII Code #111 is: o

ASCII Code #112 is: p
ASCII Code #113 is: q
ASCII Code #114 is: r
ASCII Code #115 is: s
ASCII Code #116 is: t
ASCII Code #117 is: u
ASCII Code #118 is: v
ASCII Code #119 is: w
ASCII Code #120 is: x
ASCII Code #121 is: y
ASCII Code #122 is: z
ASCII Code #123 is: {
ASCII Code #124 is: |
ASCII Code #125 is: }
ASCII Code #126 is: ~

Characters & Strings Lesson 1
CS1313 Fall 2016 18

A char is an int #1
#include <stdio.h>
int main ()
{ /* main */

const int first_printable_character_code = 32;
const int last_printable_character_code = 126;
const int program_success_code = 0;
int index;
for (index = first_printable_character_code;

index <= last_printable_character_code;
index++) {

printf("ASCII Code #%3d is: %c\n",
index, index);

} /* for index */
return program_success_code;

} /* main */

Notice that the variable named index is declared as an int,
but in the printf statement, index can be used not
only as an int but also as a char. The reverse is also true.

Characters & Strings Lesson 1
CS1313 Fall 2016 19

A char is an int #2
#include <stdio.h>
int main ()
{ /* main */

const int program_success_code = 0;
const char first_printable_character_code = 32;
const char last_printable_character_code = 126;
char index;
for (index = first_printable_character_code;

index <= last_printable_character_code;
index++) {

printf("ASCII Code #%3d is: %c\n",
index, index);

} /* for index */
return program_success_code;

} /* main */

Notice that the variable named index is declared as a char,
but in the printf statement, index can be used not
only as a char but also as an int. The reverse is also true.

Characters & Strings Lesson 1
CS1313 Fall 2016 20

Declaring char Scalar Variables #1
Here’s a declaration of a char scalar variable:

char first_initial;

This declaration tells the compiler to grab a group of bytes,
name them first_initial, and think of them as
storing a char.

How many bytes in a char scalar?
Each char scalar takes one byte:

first_initial :

Characters & Strings Lesson 1
CS1313 Fall 2016 21

Declaring char Scalar Variables #2
char first_initial;

REMEMBER: A char is just like an int, except that
it uses fewer bytes:
typically, a char is 1 byte and an int is 4 bytes.

So, we can use char variables and constants in exactly the
same ways that we use int variables and constants.

first_initial :

Characters & Strings Lesson 1
CS1313 Fall 2016 22

char Like int Example
% cat charadd.c
#include <stdio.h>

int main ()
{ /* main */

const int program_success_code = 0;
int addend, augend;
char sum;

printf("What are the addend and augend?\n");
scanf("%d %d", &addend, &augend);
sum = addend + augend;
printf("The sum is %d.\n", sum);
return program_success_code;

} /* main */
% gcc -o charadd charadd.c
% charadd
What are the addend and augend?
1 4
The sum is 5.

Characters & Strings Lesson 1
CS1313 Fall 2016 23

char Scalar Literal Constants
A character scalar literal constant is a single char

enclosed in single quotes:
'H'

Note that
'''

is illegal.
However, you can also represent an individual char literal

using the octal (base 8) code that represents it.
For example, the apostrophe character corresponds to ASCII

code 39 decimal, which converts to 47 octal. So we can
represent the apostrophe character like so:

'\047'

Characters & Strings Lesson 1
CS1313 Fall 2016 24

char Scalar Literal Constant Example
% cat apostrophe.c
#include <stdio.h>

int main ()
{ /* main */

const int program_success_code = 0;

printf("Apostrophe: %c\n", '\047');
return program_success_code;

} /* main */
% gcc -o apostrophe apostrophe.c
% apostrophe
Apostrophe: '

Characters & Strings Lesson 1
CS1313 Fall 2016 25

Using char Scalar Variables
In C, we can use char scalar variables in many of the same

ways that we use int scalar variables. As we saw, for
example, we can declare them:

char first_initial;
We can also assign char scalar values to char scalar

variables, by enclosing them in single quotes:
first_initial = 'H';

We can output char scalar values from char scalar
variables, like so:

printf("My first initial is %c.\n",

first_initial);

Characters & Strings Lesson 1
CS1313 Fall 2016 26

Using char Scalar Variables Example
% cat charscalar.c
#include <stdio.h>
int main ()
{ /* main */

const char computers_favorite_character = 'q';
const int program_success_code = 0;
char users_favorite_character;
printf("What is your favorite character?\n");
scanf("%c", &users_favorite_character);
printf("Your favorite character is '%c'.\n",

users_favorite_character);
printf("My favorite character is '%c'.\n",

computers_favorite_character);
return program_success_code;

} /* main */
% gcc -o charscalar charscalar.c
% charscalar
What is your favorite character?
Z
Your favorite character is 'Z'.
My favorite character is 'q'.

Characters & Strings Lesson 1
CS1313 Fall 2016 27

char Arrays #1
In C, you can have an array of type char, just as you can

have arrays of numeric types:
char my_name[12];

We can fill this char array with characters and be able to
print them out.

Characters & Strings Lesson 1
CS1313 Fall 2016 28

char Arrays #2
my_name[0] = 'H';
my_name[1] = 'e';
my_name[2] = 'n';
my_name[3] = 'r';
my_name[4] = 'y';
my_name[5] = ' ';
my_name[6] = 'N';
my_name[7] = 'e';
my_name[8] = 'e';
my_name[9] = 'm';
my_name[10] = 'a';
my_name[11] = 'n';

Is this a good solution?

Characters & Strings Lesson 1
CS1313 Fall 2016 29

Character Array Example #1
#include <stdio.h>
int main ()
{ /* main */

const int my_name_length = 12;
char my_name[my_name_length];
int index;
my_name[0] = 'H';
my_name[1] = 'e';
my_name[2] = 'n';
my_name[3] = 'r';
my_name[4] = 'y';
my_name[5] = ' ';
my_name[6] = 'N';
my_name[7] = 'e';
my_name[8] = 'e';
my_name[9] = 'm';
my_name[10] = 'a';
my_name[11] = 'n';
printf("My name is ");
for (index = 0; index < my_name_length; index++) {

printf("%c", my_name[index]);
} /* for index */
printf(".\n");
return 0;

} /* main */

Characters & Strings Lesson 1
CS1313 Fall 2016 30

Character Array Example #2
% gcc -o chararray chararray.c
% chararray
My name is Henry Neeman.

This is an improvement, but it’s still not an efficient way to
assign a sequence of characters to a variable.

What we want is a kind of char variable whose use will be
convenient for inputting, outputting and using sequences of
characters.

Characters & Strings Lesson 1
CS1313 Fall 2016 31

Character Strings #1
A character string is a sequence of characters with the

following properties:
 it is stored like a char array;
 it is used like a char scalar.
In C, we declare a character string like so:

char my_name[my_name_length+1];

Notice that a character string is declared exactly like a char
array; in fact, a character string is a char array.

Characters & Strings Lesson 1
CS1313 Fall 2016 32

String Terminator
The only difference between a char array and a character

string is that the length of the char string is one greater
than the number of characters to be stored, and that
the last character in any C character string is the
null character, called NUL, which corresponds to
integer value 0:

'\0'
A null character (integer 0) used to indicate the end of a string

is known as a character string terminator.
In general, a numeric value that is used to indicate that a

particular state has been reached – for example, the end of a
list – is called a sentinel value.

So, the character string terminator NUL is a sentinel that
indicates the end of the string in question.

Characters & Strings Lesson 1
CS1313 Fall 2016 33

Character String Assignment Example #1
% cat charstrassnbad.c
#include <stdio.h>

int main ()
{ /* main */

const int my_name_length = 12;
const int program_success_code = 0;
char my_name[my_name_length + 1];

my_name = "Henry Neeman"; /* <-- DOESN’T WORK! */
printf("My name is %s.\n", my_name);
return program_success_code;

} /* main */
% gcc -o charstrassnbad charstrassnbad.c
charstrassnbad.c: In function ‘main’:
charstrassnbad.c:8: incompatible types

in assignment

The version above seems like it should work, but it doesn’t!

Characters & Strings Lesson 1
CS1313 Fall 2016 34

Character String Assignment Example #2
% cat charstrassn.c
#include <stdio.h>
#include <string.h>

int main ()
{ /* main */

const int my_name_length = 12;
const int program_success_code = 0;
char my_name[my_name_length + 1];

strcpy(my_name, "Henry Neeman"); /* <-- WORKS! */
printf("My name is %s.\n", my_name);
return program_success_code;

} /* main */
% gcc -o charstrassn charstrassn.c
% charstrassn
My name is Henry Neeman.

This version works!

	Characters & Strings Lesson 1 Outline
	Numeric Encoding of Non-numeric Data #1
	Numeric Encoding of Non-numeric Data #2
	Representing Characters
	How Characters Are Represented #1
	How Characters Are Represented #2
	Representing Digits
	Representing Punctuation
	ASCII
	ASCII Table #1
	ASCII Table #2
	ASCII Table #3
	ASCII Table #4
	ASCII Confirmation Program #1
	ASCII Confirmation Program #2
	ASCII Confirmation Program #3
	ASCII Confirmation Program #4
	A char is an int #1
	A char is an int #2
	Declaring char Scalar Variables #1
	Declaring char Scalar Variables #2
	char Like int Example
	char Scalar Literal Constants
	char Scalar Literal Constant Example
	Using char Scalar Variables
	Using char Scalar Variables Example
	char Arrays #1
	char Arrays #2
	Character Array Example #1
	Character Array Example #2
	Character Strings #1
	String Terminator
	Character String Assignment Example #1
	Character String Assignment Example #2

