
1
C Introduction Lesson

CS1313 Spring 2025

13. Standard Input & Standard
Output

14. Block Delimiters
15. What Is a Comment? #1
16. What Is a Comment? #2
17. Are Comments Necessary?
18. hello_world.c with

Comments
19. hello_world.c without

Comments
20. Flowchart for

hello_world.c

1. C Introduction Lesson Outline
2. hello_world.c
3. C Character Set
4. C is Case Sensitive
5. Character String Literal Constant
6. String Literal Cannot Use

Multiple Lines
7. Multi-line String Literal

Example
8. Newline
9. Newline Example
10. White Space
11. Statements
12. Statement Terminator

C Introduction Lesson Outline

2
C Introduction Lesson

CS1313 Spring 2025

/*

 *** Program: hello_world ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012 Fridays 1:00pm ***
 *** Description: Prints the sentence ***
 *** "Hello, world!" to standard output. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*

 *** Execution Section (body) ***

 *
 * Print the sentence to standard output
 * (i.e., to the terminal screen).
 */
 printf("Hello, world!\n");
} /* main */

hello_world.c

3
C Introduction Lesson

CS1313 Spring 2025

These are the characters that C recognizes (specifically,
the characters that can be typed on
a standard US English QWERTY computer keyboard):

 Letters (upper case and lower case)
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m
n o p q r s t u v w x y z
 Digits
0 1 2 3 4 5 6 7 8 9

 Special Characters (punctuation etc)
space (also known as blank)
’ " () * + - / : =
! & $; < > % ? , .
ˆ # @ ̃‘ { } [] \ |

C Character Set

4
C Introduction Lesson

CS1313 Spring 2025

C is case sensitive: it distinguishes between UPPER case
(CAPITAL) and lower case (small) letters.

Keywords in C – for example, the keyword int –
MUST be in lower case. For example:

#include <stdio.h>

int main ()
{ /* main */
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n",
 height_in_cm);
} /* main */

C is Case Sensitive

5
C Introduction Lesson

CS1313 Spring 2025

A character string literal constant is a sequence of characters
delimited by a double quote at the beginning and
a double quote at the end.

A character string literal constant is also known as a
character string literal or a string literal for short.

For example, in this printf statement:
 printf("This is a printf.\n");

the following is a string literal:
 "This is a printf.\n"

The output of this printf statement is:
 This is a printf.

followed by a newline, also known as a carriage return.

Character String Literal Constant

6
C Introduction Lesson

CS1313 Spring 2025

A character string literal constant can only use ONE LINE;
that is, both of its delimiters (the double quotes)
MUST be on the same line of source code text.

So, each of these is CORRECT:
printf("This string literal takes one line");

printf(" and so does this string literal.\n");

And this is WRONG WRONG WRONG:
printf("This string literal takes

 more than one line so it's WRONG!\n");

Some compilers will accept this but won’t be happy;
other compilers will simply reject it.

Regardless, if this appears in a program in CS1313,
YOU WILL BE SEVERELY PENALIZED!

String Literal Cannot Use Multiple Lines

7
C Introduction Lesson

CS1313 Spring 2025

% cat bad_string_literal.c
#include <stdio.h>

int main ()
{ /* main */
 printf("This string literal takes
 more than one line so it's WRONG!\n");
} /* main */
% gcc -o bad_string_literal bad_string_literal.c
bad_string_literal.c: In function ‘main’:
bad_string_literal.c:5: error: missing terminating " character
bad_string_literal.c:6: error: ‘more’ undeclared (first use in this function)
bad_string_literal.c:6: error: (Each undeclared identifier is reported only once
bad_string_literal.c:6: error: for each function it appears in.)
bad_string_literal.c:6: error: expected ‘)’ before ‘than’
bad_string_literal.c:6: error: missing terminating ' character
bad_string_literal.c:7: error: expected ‘;’ before ‘}’ token

Multi-line String Literal Example

8
C Introduction Lesson

CS1313 Spring 2025

In C, you can place a newline, also known as a carriage return,
inside a string literal using:

\n

If a newline appears inside a string literal in the source code,
then when the string literal is output,
the newline causes the output to move to a new line.

Newline

9
C Introduction Lesson

CS1313 Spring 2025

% cat newline.c
#include <stdio.h>

int main ()
{ /* main */
 printf("Howdy do!\n");
 printf("This string literal contains a newline in the\nmiddle ");
 printf("but this string literal contains a newline at the end.\n");
 printf("So there!\n");
} /* main */
% gcc -o newline newline.c
% newline
Howdy do!
This string literal contains a newline in the
middle but this string literal contains a newline at the end.
So there!

Note: In general, it’s better programming practice to
put newlines only at the end of your string literals,
not in the middle, because in the middle they can be
difficult for programmers (for example, graders) to see.

Newline Example

White Space
White space is the general term for all of:
 blank spaces;
 tabs;
 carriage returns.
The term comes from the parts of standard typing paper that
don’t have any ink on them.

C Introduction Lesson
CS1313 Spring 2025 10

11
C Introduction Lesson

CS1313 Spring 2025

A statement in a program is like a sentence in a natural language:
it’s the smallest possible collection of words and punctuation
that can stand by itself and have meaning.

For example:
printf("Hello, world.\n");

This statement is known as a printf statement
(pronounced “print-eff”).

It tells the compiler to output to the terminal screen the string literal
Hello, world.

followed by a newline.

Statements

12
C Introduction Lesson

CS1313 Spring 2025

In C, every statement ends with a semicolon,
which is known as the statement terminator.

For example:
 int height_in_cm;

 height_in_cm = 160;
 printf("My height is %d cm.\n",
 height_in_cm);

Notice: A statement CAN take more than one line
(but recall that a string literal CAN’T take more than one line).

The way you find the end of a statement is by
finding its statement terminator.

The way you find the start of a statement is by
finding the statement terminator of the previous statement.

Statement Terminator

13
C Introduction Lesson

CS1313 Spring 2025

 Standard input is a user typing at the keyboard. It is
sometimes shortened to stdin, pronounced “standard in.”

 Standard output is the computer outputting to
the terminal screen. It is sometimes shortened to stdout,
pronounced “standard out.”

In C:
 a scanf statement always inputs from stdin, and
 a printf statement always outputs to stdout.
More on this later.

Standard Input & Standard Output

14
C Introduction Lesson

CS1313 Spring 2025

The open curly brace, also known as the left brace,
{

acts as the start of a block and is known as the
 block open.
The close curly brace, also known as the right brace,

}
acts as the end of a block and is known as the
 block close.
The block open and block close are said to delimit the block:

they indicate where the block begins and where the block
ends.

Delimit: Indicate where something begins and ends.

Block Delimiters

15
C Introduction Lesson

CS1313 Spring 2025

A comment is a piece of text in a source file that:
 tells human beings (for example, programmers)

something useful about the program,
BUT
 is ignored by the compiler, so it has absolutely no affect

on how the program runs.

In C, the start of a comment is indicated by
/*

and the end of a comment is indicated by
 */

All text appearing between these comment delimiters is part of
the comment, and therefore is ignored by the compiler.

Delimit: Indicate where something begins and ends.

What Is a Comment? #1

16
C Introduction Lesson

CS1313 Spring 2025

A comment is a piece of text in a source file that:
 tells human beings (for example, programmers)

something useful about the program,
BUT
 is ignored by the compiler, so it has absolutely no affect

on how the program runs.

In C, the start of a comment is indicated by
/*

and the end of a comment is indicated by
 */

A comment can use multiple lines of text.
The delimiters DON’T have to be on the same line.

What Is a Comment? #2

17
C Introduction Lesson

CS1313 Spring 2025

Comments are ignored by the compiler, so
strictly speaking they aren’t needed to compile and run.

But, if you don’t put them into one of your
CS1313 programming projects,
YOU MAY LOSE A FULL LETTER GRADE OR MORE
on that project.

Why?
Comments tell human beings useful things about your program.
They help programmers – including you, a month later when

you’ve forgotten everything about your program –
to understand your program.

They also tell graders that you know what the heck you’re doing.

Are Comments Necessary?

18
C Introduction Lesson

CS1313 Spring 2025

/*

 *** Program: hello_world ***
 *** Author: Henry Neeman (hneeman@ou.edu) ***
 *** Course: CS 1313 010 Spring 2025 ***
 *** Lab: Sec 012 Fridays 1:00pm ***
 *** Description: Prints the sentence ***
 *** "Hello, world!" to standard output. ***

 */
#include <stdio.h>

int main ()
{ /* main */
 /*

 *** Execution Section (body) ***

 *
 * Print the sentence to standard output
 * (i.e., to the terminal screen).
 */
 printf("Hello, world!\n");
} /* main */

hello_world.c with Comments

19
C Introduction Lesson

CS1313 Spring 2025

#include <stdio.h>

int main ()
{
 printf("Hello, world!\n");
}

hello_world.c without Comments

20
C Introduction Lesson

CS1313 Spring 2025

References:
http://www.edrawsoft.com/flowchart-symbols.php

Start

End

Output “Hello, world!”

An oval denotes either
the start or the end of
the program, or a halt
operation within the
program (which we’ll
learn about later).

A parallelogram
denotes either an input
operation or an output
operation.

An arrow denotes the
flow of the program.

int main ()
{
 printf("Hello, world!\n");
}

Flowchart for hello_world.c

http://www.edrawsoft.com/flowchart-symbols.php

	C Introduction Lesson Outline
	hello_world.c
	C Character Set
	C is Case Sensitive
	Character String Literal Constant
	String Literal Cannot Use Multiple Lines
	Multi-line String Literal Example
	Newline
	Newline Example
	White Space
	Statements
	Statement Terminator
	Standard Input & Standard Output
	Block Delimiters
	What Is a Comment? #1
	What Is a Comment? #2
	Are Comments Necessary?
	hello_world.c with Comments
	hello_world.c without Comments
	Flowchart for hello_world.c

