
1Boolean Data Lesson #1
CS1313 Spring 2025

15. What is a Boolean Expression? #1
16. What is a Boolean Expression? #2
17. What is a Boolean Expression? #3
18. What is a Boolean Expression? #4
19. What is a Boolean Expression? #5
20. Boolean Expressions
21. Boolean Operations
22. C Boolean Expression Evaluation

Values
23. Boolean Expression Example #1
24. Boolean Expression Example #2
25. Boolean Variables Example #1
26. Boolean Variables Example #2

1. Boolean Data Outline
2. Data Types
3. C Boolean Data Type: char or int
4. C Built-In Boolean Data Type: bool
5. bool Data Type: Not Used in CS1313
6. Boolean Declaration
7. Boolean or Character?
8. Boolean or Character Example #1
9. Boolean or Character Example #2
10. Boolean, Character or Integer? #1
11. Boolean, Character or Integer? #2
12. Boolean Literal Constants
13. Using Boolean Literal Constants #1
14. Using Boolean Literal Constants #2

Boolean Data Lesson #1 Outline

2Boolean Data Lesson #1
CS1313 Spring 2025

A data type is (surprise!) a type of data:
 Numeric

 int: integer
 float: floating point (also known as real)

 Non-numeric
 char: character

Note that this list of data types ISN’T exhaustive –
there are many more data types (and you can define your own).

#include <stdio.h>
int main ()
{ /* main */
 float standard_deviation, relative_humidity;
 int count, number_of_silly_people;
 char middle_initial, hometown[30];
} /* main */

Data Types

3Boolean Data Lesson #1
CS1313 Spring 2025

The C data type typically used for storing Boolean values
is char, although int will also work.

Like numeric data types, Booleans have
particular ways of being stored in memory and
particular ways of being operated on.

Conceptually, a Boolean value represents a single bit in memory.
But, the char and int data types aren’t implemented

this way – if for no other reason than that
computers can’t address a single bit,
because the smallest collection of bits that they can address
is a byte (8 bits) – or, in a few cases, a word.

C Boolean Data Type: char or int

C Built-In Boolean Data Type: bool
C also has a built-in data type for Booleans:

bool

The bool data type has possible values
false

and
true

However, some C compilers don’t have available by default
the bool data type nor the Boolean values true and
false; you have to make them available using this directive:
#include <stdbool.h>

(after #include <stdio.h>).
Boolean Data Lesson #1

CS1313 Spring 2025 4

bool Data Type: Not Used in CS1313
In CS1313, we WON’T use the bool data type,
nor its values true and false.
Instead, we’ll use char or int.
Similarly, we’ll use 0 for false and
1 (or any nonzero integer value) for true.

Boolean Data Lesson #1
CS1313 Spring 2025 5

6Boolean Data Lesson #1
CS1313 Spring 2025

char CS1313_lectures_are_fascinating;
This declaration tells the compiler to grab a group of bytes,

name them CS1313_lectures_are_fascinating,
and think of them as storing a Boolean value
(either true or false).

How many bytes?
Even though conceptually a Boolean represents a single bit,

in practice char variables are usually implemented using
8 bits (1 byte):

CS1313_lectures_are_fascinating :

Boolean Declaration

Boolean Data Lesson #1
CS1313 Spring 2025

Question: How does the C compiler know that a particular
char declaration is a Boolean rather than a character?

Answer: It doesn’t.

Whether a char (or an int) is treated by a program
as a Boolean or as a character (respectively, an integer)
depends entirely on how you use it in the program.

Boolean or Character?

8Boolean Data Lesson #1
CS1313 Spring 2025

#include <stdio.h>
int main ()
{ /* main */
 const int maximum_short_height_in_cm = 170;
 const int program_success_code = 0;
 int my_height_in_cm = 160;
 char I_am_Henry = 1;
 char I_am_tall;
 char my_middle_initial = 'J';
 I_am_tall =
 (!I_am_Henry) &&
 (my_height_in_cm >
 maximum_short_height_in_cm);
 printf("I_am_Henry = %d\n", I_am_Henry);
 printf("my_height_in_cm = %d\n",
 my_height_in_cm);
 printf("I_am_tall = %d\n", I_am_tall);
 printf("my_middle_initial = %c\n",
 my_middle_initial);
 return program_success_code;
} /* main */

Boolean or Character Example #1

9Boolean Data Lesson #1
CS1313 Spring 2025

% gcc -o short short.c
% short
I_am_Henry = 1
my_height_in_cm = 160
I_am_tall = 0
my_middle_initial = J

Whether a char (or an int) is treated by a program as
a Boolean or a character (respectively, an integer)
depends entirely on how you use it in the program.

Boolean or Character Example #2

10Boolean Data Lesson #1
CS1313 Spring 2025

In the previous example program, we had char variables
named I_am_Henry and I_am_tall.

We treated them as Boolean variables in the calculation
subsection, but in the output subsection we had:

printf("I_am_Henry = %d\n", I_am_Henry);
printf("I_am_tall = %d\n", I_am_tall);

How can this be?

Boolean, Character or Integer? #1

11Boolean Data Lesson #1
CS1313 Spring 2025

char I_am_Henry = 1;
char I_am_tall;
…
I_am_tall = (!I_am_Henry) && … ;
…
printf("I_am_Henry = %d\n", I_am_Henry);
…
printf("I_am_tall = %d\n", I_am_tall);

How can it be that the same variable is
simultaneously a Boolean, a character and an integer?

It turns out that char not only means character, it also means
an integer of 1 byte (8 bits).

This is confusing, but you’ll get used to it.

Boolean, Character or Integer? #2

12Boolean Data Lesson #1
CS1313 Spring 2025

In C, a Boolean literal constant can have
either of two possible values (but not both at the same time,
of course):

 to represent false: 0
 to represent true: anything other than 0 (usually 1)

Boolean Literal Constants

13Boolean Data Lesson #1
CS1313 Spring 2025

We can use Boolean literal constants in several ways:
 In declaring and initializing a named constant:
 const char true = 1;

 In declaring and initializing a variable:
 char I_am_getting_a_bad_grade = 0;

 In an assignment:
 this_is_my_first_guess = 1;

 In an expression:
 Henry_isnt_tall = Henry_is_tall && 0;

Using Boolean Literal Constants #1

14Boolean Data Lesson #1
CS1313 Spring 2025

The first two of these uses – in a named constant declaration and
in a variable declaration – are considered good programming
practice, AND SO IS THE THIRD (in an assignment),
which is a way that Booleans are different from numeric data.

As for using Boolean literal constants in expressions,
it’s not so much that it’s considered bad programming practice,
it’s just that it’s kind of pointless.

Using Boolean Literal Constants #2

15Boolean Data Lesson #1
CS1313 Spring 2025

a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators
 Parentheses: ()

What is a Boolean Expression? #1

16Boolean Data Lesson #1
CS1313 Spring 2025

a || (b || c && !d) && e && (f || g) && h
In programming, a Boolean expression is a combination of:
 Boolean Operands, such as:

 Boolean literal constants (0 for false, nonzero for true)
 Boolean named constants
 Boolean variables
 Boolean-valued function invocations

 Boolean Operators
 Parentheses: ()

What is a Boolean Expression? #2

17Boolean Data Lesson #1
CS1313 Spring 2025

a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Logical Operators

 Parentheses: ()

What is a Boolean Expression? #3

18Boolean Data Lesson #1
CS1313 Spring 2025

a || (b || c && !d) && e && (f || g) && h
In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Is Equal: ==
 Not Equal: !=
 Less Than: <
 Less Than or Equal To: <=
 Greater Than: >
 Greater Than or Equal To: >=

 Logical Operators
 Parentheses: ()

What is a Boolean Expression? #4

19Boolean Data Lesson #1
CS1313 Spring 2025

a || (b || c && !d) && e && (f || g) && h
In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Logical Operators

 Negation (NOT): !
 Conjunction (AND): &&
 Disjunction (OR): ||

 Parentheses: ()

What is a Boolean Expression? #5

20Boolean Data Lesson #1
CS1313 Spring 2025

Just like a numeric (arithmetic) expression,
a Boolean expression is a combination of Boolean terms
(such as variables, named constants, literal constants and
Boolean-valued function calls), Boolean operators
(for example, !, &&, ||, relational comparisons)
and parentheses.

I_am_happy
!I_am_happy

it_is_raining && it_is_cold
it_is_raining || it_is_cold

(!it_is_raining) || (it_is_cold && I_am_happy)

Boolean Expressions

21Boolean Data Lesson #1
CS1313 Spring 2025

Operation Kind Operator Usage Effect
Identity Unary None x No change to value of x
Negation Unary ! !x Inverts value of x
Conjunction
(AND)

Binary && x && y 1 if both x is nonzero AND
y is nonzero; otherwise 0

Disjunction
(Inclusive
OR)

Binary || x || y 1 if either x is nonzero OR
y is nonzero, or both;
otherwise 0

Like arithmetic operations, Boolean operations come in
two varieties: unary and binary.

A unary operation is an operation that uses only one term;
a binary operation uses two terms.

Boolean operations include:

Boolean Operations

22Boolean Data Lesson #1
CS1313 Spring 2025

C Boolean expressions evaluate to either:
 0 (representing false)
 1 (representing true)

Note that any nonzero value represents true, but,
when C evaluates a Boolean expression, then
if that expression evaluates to true, then
specifically its value is 1.

Note that only 0 represents false, ever.

C Boolean Expression Evaluation Values

23Boolean Data Lesson #1
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const char true = 1, false = 0;

 printf(" true = %d, false = %d\n", true, false);
 printf("!true = %d, !false = %d\n", !true, !false);
 printf("\n");
 printf("true || true = %d\n", true || true);
 printf("true || false = %d\n", true || false);
 printf("false || true = %d\n", false || true);
 printf("false || false = %d\n", false || false);
 printf("\n");
 printf("true && true = %d\n", true && true);
 printf("true && false = %d\n", true && false);
 printf("false && true = %d\n", false && true);
 printf("false && false = %d\n", false && false);
} /* main */

Boolean Expression Example #1

24Boolean Data Lesson #1
CS1313 Spring 2025

% gcc -o logic_expression_simple logic_expression_simple.c
% logic_expression_simple
 true = 1, false = 0
!true = 0, !false = 1

true || true = 1
true || false = 1
false || true = 1
false || false = 0

true && true = 1
true && false = 0
false && true = 0
false && false = 0

Boolean Expression Example #2

25Boolean Data Lesson #1
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int true = 1;
 const int false = 0;
 int project_due_soon;
 int been_putting_project_off;
 int start_working_on_project_today;

 printf("Let's find out whether you should start working today!\n");
 printf("Is it true that you have a programming project due soon?\n");
 printf(" (Answer %d for true, %d for false.)\n", true, false);
 scanf("%d", &project_due_soon);
 printf("Is it true that you have been putting off working on it?\n");
 printf(" (Answer %d for true, %d for false.)\n", true, false);
 scanf("%d", &been_putting_project_off);
 start_working_on_project_today =
 project_due_soon && been_putting_project_off;
 printf("Is it true that you should start ");
 printf("working on it today?\n");
 printf("ANSWER: %d\n",
 start_working_on_project_today);
} /* main */

Boolean Variables Example #1

26Boolean Data Lesson #1
CS1313 Spring 2025

% gcc -o pp_logic pp_logic.c
% pp_logic
Let's find out whether you should start working today!

Is it true that you have a programming project due soon?

 (Answer 1 for true, 0 for false.)

1

Is it true that you have been putting off working on it?

 (Answer 1 for true, 0 for false.)

1

Is it true that you should start working on it today?

ANSWER: 1

Boolean Variables Example #2

	Boolean Data Lesson #1 Outline
	Data Types
	C Boolean Data Type: char or int
	C Built-In Boolean Data Type: bool
	bool Data Type: Not Used in CS1313
	Boolean Declaration
	Boolean or Character?
	Boolean or Character Example #1
	Boolean or Character Example #2
	Boolean, Character or Integer? #1
	Boolean, Character or Integer? #2
	Boolean Literal Constants
	Using Boolean Literal Constants #1
	Using Boolean Literal Constants #2
	What is a Boolean Expression? #1
	What is a Boolean Expression? #2
	What is a Boolean Expression? #3
	What is a Boolean Expression? #4
	What is a Boolean Expression? #5
	Boolean Expressions
	Boolean Operations
	C Boolean Expression Evaluation Values
	Boolean Expression Example #1
	Boolean Expression Example #2
	Boolean Variables Example #1
	Boolean Variables Example #2

