
Boolean Data Lesson
CS1313 Spring 2017  1

Boolean Data Outline
1. Boolean Data Outline
2. Data Types
3. C Boolean Data Type: char or int
4. C Built-In Boolean Data Type: bool
5. bool Data Type: Not Used in CS1313
6. Boolean Declaration
7. Boolean or Character?
8. Boolean or Character Example #1
9. Boolean or Character Example #2
10. Boolean, Character or Integer? #1
11. Boolean, Character or Integer? #1
12. Boolean Literal Constants
13. Using Boolean Literal Constants #1
14. Using Boolean Literal Constants #2
15. What is a Boolean Expression? #1
16. What is a Boolean Expression? #2
17. What is a Boolean Expression? #3
18. What is a Boolean Expression? #4
19. What is a Boolean Expression? #5
20. Boolean Expressions
21. Boolean Operations
22. C Boolean Expression Evaluation Values
23. Boolean Expression Example #1
24. Boolean Expression Example #2
25. Boolean Variables Example #1

26. Boolean Variables Example #2
27. Relational Operations #1
28. Relational Operations #2
29. Relational Expressions Example #1
30. Relational Expressions Example #2
31. Structure of Boolean Expressions
32. Boolean Expressions with Parentheses
33. Precedence Order of Boolean Operations
34. Boolean Precedence Order Example #1
35. Boolean Precedence Order Example #2
36. Boolean Precedence Order Example
37. Relational Expressions Example #1
38. Relational Expressions Example #2
39. Relational Expressions Example #3
40. Relational Expressions Example #4
41. Relational Expressions Example #5
42. Relational Expressions Example #6
43. Relational Expressions Example #7
44. Why Not Use a < b < c? #1
45. Why Not Use a < b < c? #2
46. Short Circuiting
47. Short Circuit Example #1
48. Short Circuit Example #2
49. Short Circuit Example #3



Boolean Data Lesson
CS1313 Spring 2017  2

Data Types

A data type is (surprise) a type of data:
 Numeric

 int: integer
 float: floating point (also known as real)

 Non-numeric
 char: character

#include <stdio.h>
int main ()
{ /* main */

float standard_deviation, relative_humidity;
int   count, number_of_silly_people;
char  middle_initial, hometown[30];

} /* main */



Boolean Data Lesson
CS1313 Spring 2017  3

C Boolean Data Type: char or int
The C data type typically used for storing Boolean values is
char, although int will also work.

Like numeric data types, Booleans have particular ways of 
being stored in memory and of being operated on.

Conceptually, a Boolean value represents a single bit in 
memory.

But, the char and int data types aren’t implemented 
this way – if for no other reason than that computers 
can’t address a single bit, since the smallest collection of bits 
that they can address is a byte (or, in a few cases, a word).



C Built-In Boolean Data Type: bool

C also has a built-in data type for Booleans:
bool

The bool data type has possible values
false

and
true

However, some C compilers don’t have the bool data type 
and the Boolean values true and false available by 
default; you have to make them available using this directive:
#include <stdbool.h>

(after #include <stdio.h>).

Boolean Data Lesson
CS1313 Spring 2017  4



bool Data Type: Not Used in CS1313
In CS1313, we WON’T use the bool data type,               
nor its values true and false.
Instead, we’ll use char or int. 
Similarly, we’ll use 0 for falsity and 1 (or any nonzero 
integer value) for truth.

Boolean Data Lesson
CS1313 Spring 2017  5



Boolean Data Lesson
CS1313 Spring 2017  6

Boolean Declaration
char CS1313_lectures_are_fascinating;

This declaration tells the compiler to grab a group of bytes, 
name them CS1313_lectures_are_fascinating,  
and think of them as storing a Boolean value (either       
true or false).

How many bytes?
Even though conceptually a Boolean represents a single bit,  

in practice char variables are usually implemented using 
8 bits (1 byte):

CS1313_lectures_are_fascinating :



Boolean Data Lesson
CS1313 Spring 2017  7

Boolean or Character?
Question: How does the C compiler know that a particular
char declaration is a Boolean rather than a character?

Answer: It doesn’t.

Whether a char (or an int) is treated by a program as a 
Boolean or a character (respectively, an integer)      
depends entirely on how you use it in the program.



Boolean Data Lesson
CS1313 Spring 2017  8

Boolean or Character Example #1
#include <stdio.h>
int main ()
{ /* main */

const int maximum_short_height_in_cm = 170;
const int program_success_code =   0;
int my_height_in_cm = 160;
char I_am_Henry = 1;
char I_am_tall;
char my_middle_initial = 'J';
I_am_tall =

(!I_am_Henry) ||
(my_height_in_cm >
maximum_short_height_in_cm);

printf("I_am_Henry = %d\n", I_am_Henry);
printf("my_height_in_cm = %d\n",

my_height_in_cm);
printf("I_am_tall = %d\n", I_am_tall);
printf("my_middle_initial = %c\n",

my_middle_initial);
return program_success_code;

} /* main */



Boolean Data Lesson
CS1313 Spring 2017  9

Boolean or Character Example #2
% gcc -o short short.c
% short
I_am_Henry = 1
my_height_in_cm = 160
I_am_tall = 0
my_middle_initial = J

Whether a char (or an int) is treated by a program as 
a Boolean or a character (respectively, an integer) 
depends entirely on how you use it in the program.



Boolean Data Lesson
CS1313 Spring 2017  10

Boolean, Character or Integer? #1
In the previous example program, we had char variables 

named I_am_Henry and I_am_tall.
We treated them as Boolean variables in the calculation 

subsection, but in the output subsection we had:

printf("I_am_Henry = %d\n", I_am_Henry);
printf("I_am_tall = %d\n", I_am_tall);

How can this be?



Boolean Data Lesson
CS1313 Spring 2017  11

Boolean, Character or Integer? #1
char I_am_Henry = 1;
char I_am_tall;
…
I_am_tall = (!I_am_Henry) || … ;
…
printf("I_am_Henry = %d\n", I_am_Henry);
…
printf("I_am_tall = %d\n", I_am_tall);

How can it be that the same variable is             
simultaneously a Boolean, a character and an integer?

It turns out that char not only means character, it also 
means an integer of 1 byte (8 bits).

This is confusing, but you’ll get used to it.



Boolean Data Lesson
CS1313 Spring 2017  12

Boolean Literal Constants

In C, a Boolean literal constant can have either of 
two possible values (but not both at the same time, of course):

 to represent false: 0
 to represent true: anything other than 0 (usually 1)



Boolean Data Lesson
CS1313 Spring 2017  13

Using Boolean Literal Constants #1
We can use Boolean literal constants in several ways:
 In declaring and initializing a named constant:
const char true = 1;

 In declaring and initializing a variable:
char I_am_getting_a_bad_grade = 0;

 In an assignment:
this_is_my_first_guess = 1;

 In an expression:
Henry_is_short && 1;



Boolean Data Lesson
CS1313 Spring 2017  14

Using Boolean Literal Constants #2
The first two of these uses – in a named constant declaration and 

in a variable declaration – are considered good programming 
practice, AND SO IS THE THIRD (in an assignment),  
which is a way that Booleans are different from numeric data.

As for using Boolean literal constants in expressions,                    
it’s not so much that it’s considered bad programming practice, 
it’s just that it’s kind of pointless.



Boolean Data Lesson
CS1313 Spring 2017  15

What is a Boolean Expression? #1
a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators
 Parentheses: (  )



Boolean Data Lesson
CS1313 Spring 2017  16

What is a Boolean Expression? #2
a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands, such as:

 Boolean literal constants (0 for false,  nonzero for true)
 Boolean named constants
 Boolean variables
 Boolean-valued function invocations

 Boolean Operators
 Parentheses: (  )



Boolean Data Lesson
CS1313 Spring 2017  17

What is a Boolean Expression? #3
a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Logical Operators

 Parentheses: (  )



Boolean Data Lesson
CS1313 Spring 2017  18

What is a Boolean Expression? #4
a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Equal:                                ==
 Not Equal:                         !=
 Less Than:                         <
 Less Than or Equal To:     <=
 Greater Than:                     >
 Greater Than or Equal To: >=

 Logical Operators
 Parentheses: (  )



Boolean Data Lesson
CS1313 Spring 2017  19

What is a Boolean Expression? #5
a || (b || c && !d) && e && (f || g) && h

In programming, a Boolean expression is a combination of:
 Boolean Operands
 Boolean Operators, such as:

 Relational Operators (which have numeric operands)
 Logical Operators

 Negation (NOT):  !
 Conjunction (AND): &&
 Disjunction (OR):   ||

 Parentheses: (  )



Boolean Data Lesson
CS1313 Spring 2017  20

Boolean Expressions
Just like a numeric (arithmetic) expression, a                

Boolean expression is a combination of Boolean terms 
(such as variables, named constants, literal constants and 
Boolean-valued function calls), Boolean operators 
(for example, !, &&, ||, relational comparisons) 
and parentheses.

I_am_happy
!I_am_happy

it_is_raining && it_is_cold
it_is_raining || it_is_cold

(!it_is_raining) || (it_is_cold && I_am_happy)



Boolean Data Lesson
CS1313 Spring 2017  21

Boolean Operations
Like arithmetic operations, Boolean operations come in 

two varieties: unary and binary.
A unary operation is an operation that uses only one term; 

a binary operation uses two terms.
Boolean operations include:

Operation Kind Operator Usage Effect
Identity Unary None x No change to value of x
Negation Unary ! !x Inverts value of x
Conjunction
(AND)

Binary && x && y 1 if both x is nonzero AND
y is nonzero; otherwise 0

Disjunction
(Inclusive
OR)

Binary || x || y 1 if either x is nonzero OR
y is nonzero, or both;
otherwise 0



Boolean Data Lesson
CS1313 Spring 2017  22

C Boolean Expression Evaluation Values
C Boolean expressions evaluate to either:
 0 (representing false)
 1 (representing true)

Note that any nonzero value represents true, but,           
when C evaluates a Boolean expression, then 
if that expression evaluates to true, then 
specifically its value is 1.

Note that only 0 represents false, ever.



Boolean Data Lesson
CS1313 Spring 2017  23

Boolean Expression Example #1
#include <stdio.h>

int main ()
{ /* main */

const char true = 1, false = 0;

printf(" true = %d,  false = %d\n",  true,  
false);
printf("!true = %d, !false = %d\n", !true, 

!false);
printf("\n");
printf("true  || true  = %d\n", true  || true);
printf("true  || false = %d\n", true  || false);
printf("false || true  = %d\n", false || true);
printf("false || false = %d\n", false || false);
printf("\n");
printf("true  && true  = %d\n", true  && true);
printf("true  && false = %d\n", true  && false);
printf("false && true  = %d\n", false && true);
printf("false && false = %d\n", false && false);

} /* main */



Boolean Data Lesson
CS1313 Spring 2017  24

Boolean Expression Example #2
% gcc -o logic_expression_simple logic_expression_simple.c
% logic_expression_simple
true = 1,  false = 0

!true = 0, !false = 1

true  || true  = 1
true  || false = 1
false || true  = 1
false || false = 0

true  && true  = 1
true  && false = 0
false && true  = 0
false && false = 0



Boolean Data Lesson
CS1313 Spring 2017  25

Boolean Variables Example #1
#include <stdio.h>

int main ()
{ /* main */

const int true = 1;
const int false = 0;
int project_due_soon;
int been_putting_project_off;
int start_working_on_project_today;

printf("Is it true that you have a programming project due 
soon?\n");
printf("  (Answer %d for true, %d for false.)\n", true, false);
scanf("%d", &project_due_soon);
printf("Is it true that you have been putting off working on 
it?\n");
printf("  (Answer %d for true, %d for false.)\n", true, false);
scanf("%d", &been_putting_project_off);
start_working_on_project_today =

project_due_soon && been_putting_project_off;
printf("Is it true that you should start ");
printf("working on it today?\n");
printf("ANSWER: %d\n",

start_working_on_project_today);
} /* main */



Boolean Data Lesson
CS1313 Spring 2017  26

Boolean Variables Example #2
% gcc -o pp_logic pp_logic.c
% pp_logic
Is it true that you have a programming project due soon?

(Answer 1 for true, 0 for false.)

1

Is it true that you have been putting off working on it?

(Answer 1 for true, 0 for false.)

1

Is it true that you should start working on it today?

ANSWER: 1



Boolean Data Lesson
CS1313 Spring 2017  27

Relational Operations #1
A relational operation is a binary operation that compares 

two numeric operands and produces a Boolean result.

For example:
CS1313_lab_section == 14

cm_per_km != 100

age < 21

number_of_students <= number_of_chairs

credit_hours > 30

electoral_votes >= 270



Boolean Data Lesson
CS1313 Spring 2017  28

Relational Operations #2

Operation Operator Usage Result

Equal to == x == y 1 if the value of x is exactly the same
as the value of y; otherwise 0

Not equal to != x != y 1 if the value of x is different from
the value of y; otherwise 0

Less than < x <  y 1 if the value of x is less than the
value of y; otherwise 0

Less than or
equal to

<= x <= y 1 if the value of x is less than or
equal to the value of y; otherwise 0

Greater than > x >  y 1 if the value of x is greater than the
value of y; otherwise 0

Greater than
or equal to

>= x >= y 1 if the value of x is greater than or
equal to the value of y; otherwise 0



Boolean Data Lesson
CS1313 Spring 2017  29

Relational Expressions Example #1
#include <stdio.h>
int main ()
{ /* main */

int CS1313_size, METR2011_size;
printf("How many students are in CS1313?\n");
scanf("%d", &CS1313_size);
printf("How many students are in METR2011?\n");
scanf("%d", &METR2011_size);
printf("%d == %d: %d\n", CS1313_size, METR2011_size,

CS1313_size == METR2011_size);
printf("%d != %d: %d\n", CS1313_size, METR2011_size,

CS1313_size != METR2011_size);
printf("%d <  %d: %d\n", CS1313_size, METR2011_size,

CS1313_size <  METR2011_size);
printf("%d <= %d: %d\n", CS1313_size, METR2011_size,

CS1313_size <= METR2011_size);
printf("%d >  %d: %d\n", CS1313_size, METR2011_size,

CS1313_size >  METR2011_size);
printf("%d >= %d: %d\n", CS1313_size, METR2011_size,

CS1313_size >= METR2011_size);
} /* main */



Boolean Data Lesson
CS1313 Spring 2017  30

Relational Expressions Example #2
% gcc -o relational relational.c
% relational
How many students are in CS1313?
107
How many students are in METR2011?
96
107 == 96: 0
107 != 96: 1
107 <  96: 0
107 <= 96: 0
107 >  96: 1
107 >= 96: 1



Boolean Data Lesson
CS1313 Spring 2017  31

Structure of Boolean Expressions
A Boolean expression can be long and complicated. 

For example:
a || (b || c && !d) && e && (f || g) && h

Terms and operators can be mixed together in almost limitless 
variety, but they must follow these rules:                             
a unary operator has a term immediately to its right, and 
a binary operator has terms on both its left and its right.



Boolean Data Lesson
CS1313 Spring 2017  32

Boolean Expressions with Parentheses
Parentheses can be placed around any unary or binary 

subexpression:
(a || b) || (c && (d && (!e)))

Putting a term in parentheses may change the value of 
the expression, because a term inside parentheses will be 
calculated first. For example:

a || b  && c
is evaluated as “b AND c, OR a,” but

(a || b) && c
is evaluated as “a OR b, AND c.”



Boolean Data Lesson
CS1313 Spring 2017  33

Precedence Order of Boolean Operations
In the absence of parentheses to explicitly state the order of 

operations, the order of precedence is:
1. relational operations, left to right
2. !, left to right
3. &&, left to right
4. ||, left to right

After taking into account the above rules, the expression as     
a whole is evaluated left to right.

Rule of Thumb: If you can’t remember the priority order of 
the operators, use lots of parentheses.



Boolean Data Lesson
CS1313 Spring 2017  34

Boolean Precedence Order Example #1
! 0 || 1

1 || 1

1

but
! (0 || 1)

! 1

0



Boolean Data Lesson
CS1313 Spring 2017  35

Boolean Precedence Order Example #2
0 && 1 || 1 && 1

0 || 1 && 1

0 || 1

1

but
0 && (1 || 1) && 1

0 && 1 && 1

0 && 1

0



Boolean Data Lesson
CS1313 Spring 2017  36

Boolean Precedence Order Example
% cat logic_expressions.c
#include <stdio.h>

int main ()
{ /* main */

printf("! 0 || 1  = %d\n", ! 0 || 1);
printf("!(0 || 1) = %d\n", !(0 || 1));
printf("0 &&  1 || 1  && 1 = %d\n",

0 &&  1 || 1  && 1);
printf("0 && (1 || 1) && 1 = %d\n",

0 && (1 || 1) && 1);
} /* main */
% gcc -o logic_expressions logic_expressions.c
% lgcexpr
! 0 || 1  = 1
!(0 || 1) = 0
0 &&  1 || 1  && 1 = 1
0 && (1 || 1) && 1 = 0



Boolean Data Lesson
CS1313 Spring 2017  37

Relational Expressions Example #1
#include <stdio.h>

int main ()
{ /* main */

const int program_success_code = 0;
int a, b, c;
char b_equals_a, b_equals_c;
char b_between_a_and_c, b_between_c_and_a;
char b_outside_a_and_c;
char a_lt_b_lt_c, c_lt_b_lt_a;



Boolean Data Lesson
CS1313 Spring 2017  38

Relational Expressions Example #2
printf("Enter three different integers:\n");
scanf("%d %d %d", &a, &b, &c);
printf("The integers you entered are:\n");
printf("a = %d, b = %d, c = %d\n", a, b, c);
b_equals_a = (b == a);
b_equals_c = (b == c);
b_between_a_and_c = ((a < b) && (b < c));
b_between_c_and_a = ((c < b) && (b < a));
b_outside_a_and_c =

!(b_between_a_and_c || b_between_c_and_a);
a_lt_b_lt_c = a < b < c;
c_lt_b_lt_a = c < b < a;
printf("b == a: %d\n", b_equals_a);
printf("b == c: %d\n", b_equals_c);
printf("a < b && b < c: %d\n", b_between_a_and_c);
printf("c < b && b < a: %d\n", b_between_c_and_a);
printf("a < b < c: %d\n", a_lt_b_lt_c);
printf("c < b < a: %d\n", c_lt_b_lt_a);
printf("b outside a and c: %d\n",

b_outside_a_and_c);
return program_success_code;

} /* main */



Boolean Data Lesson
CS1313 Spring 2017  39

Relational Expressions Example #3
% gcc -o comparisons comparisons.c
% comparisons
Enter three different integers:
4 4 5
The integers you entered are:
a = 4, b = 4, c = 5
b == a: 1
b == c: 0
a < b && b < c: 0
c < b && b < a: 0
a < b < c: 1
c < b < a: 1
b outside a and c: 1



Boolean Data Lesson
CS1313 Spring 2017  40

Relational Expressions Example #4
% comparisons
Enter three different integers:
4 5 5
The integers you entered are:
a = 4, b = 5, c = 5
b == a: 0
b == c: 1
a < b && b < c: 0
c < b && b < a: 0
a < b < c: 1
c < b < a: 1
b outside a and c: 1



Boolean Data Lesson
CS1313 Spring 2017  41

Relational Expressions Example #5
% comparisons
Enter three different integers:
4 5 6
The integers you entered are:
a = 4, b = 5, c = 6
b == a: 0
b == c: 0
a < b && b < c: 1
c < b && b < a: 0
a < b < c: 1
c < b < a: 1
b outside a and c: 0



Boolean Data Lesson
CS1313 Spring 2017  42

Relational Expressions Example #6
% comparisons
Enter three different integers:
6 5 4
The integers you entered are:
a = 6, b = 5, c = 4
b == a: 0
b == c: 0
a < b && b < c: 0
c < b && b < a: 1
a < b < c: 1
c < b < a: 1
b outside a and c: 0



Boolean Data Lesson
CS1313 Spring 2017  43

Relational Expressions Example #7
% comparisons
Enter three different integers:
4 3 5
The integers you entered are:
a = 4, b = 3, c = 5
b == a: 0
b == c: 0
a < b && b < c: 0
c < b && b < a: 0
a < b < c: 1
c < b < a: 1
b outside a and c: 1



Boolean Data Lesson
CS1313 Spring 2017  44

Why Not Use a < b < c? #1
b_between_a_and_c =

((a < b) && (b < c));
b_between_c_and_a =

((c < b) && (b < a));
b_outside_a_and_c =

!(b_between_a_and_c ||
b_between_c_and_a);

a_lt_b_lt_c = a < b < c;
c_lt_b_lt_a = c < b < a;

Expressions like
a < b < c and c < b < a

WON’T accomplish what they look like they should.
Why not?



Boolean Data Lesson
CS1313 Spring 2017  45

Why Not Use a < b < c? #2
Consider the expression a < b < c, and suppose that          

a is 6, b is 5 and c is 4; that is, 6 < 5 < 4, 
which we know in real life is false.

But let’s evaluate the expression as written.
1. Using the precedence rules, we evaluate left to right, so         

first we evaluate the subexpression a < b, which is                 
a relational expression, so its result must be true (1) or false (0) 
– in this case false (0).

2. We then plug that result into the rest of the expression,     
getting 0 < c; that is, 0 < 4, which is true –
so the value for a < b < c is wrong!

Instead, we need to use this: (a < b) && (b < c)



Boolean Data Lesson
CS1313 Spring 2017  46

Short Circuiting
When a C program evaluates a Boolean expression, 

it may happen that, after evaluating some of the terms, 
the result can no longer change, regardless of 
what the remaining terms evaluate to.

In that case, the program will stop bothering to evaluate       
the rest of the expression, because evaluating the rest of   
the expression wouldn’t make any difference, but would   
waste time.

In such a case, we say that the Boolean expression will     
short circuit: the rest of the expression won’t be evaluated, 
because evaluating it would waste time, given that              
it won’t change the result.



Boolean Data Lesson
CS1313 Spring 2017  47

Short Circuit Example #1
#include <stdio.h>
int main ()
{ /* main */

const int maximum_short_height_in_cm = 170;
const int program_success_code =   0;
int my_height_in_cm = 160;
char I_am_Henry = 1;
char I_am_tall;
char my_middle_initial = 'J';
I_am_tall =

(!I_am_Henry) ||
(my_height_in_cm >
maximum_short_height_in_cm);

printf("I_am_Henry = %d\n", I_am_Henry);
printf("my_height_in_cm = %d\n",

my_height_in_cm);
printf("I_am_tall = %d\n", I_am_tall);
printf("my_middle_initial = %c\n",

my_middle_initial);
return program_success_code;

} /* main */



Boolean Data Lesson
CS1313 Spring 2017  48

Short Circuit Example #2
% gcc -o short_circuit short_circuit.c
% short_circuit
I_am_Henry = 1
my_height_in_cm = 160
I_am_short = 1
my_middle_initial = J
In the example above, the relational expression never gets 

evaluated, because the first operand in the OR operation 
(||) evaluates to 1, and therefore the entire OR operation 
must evaluate to 1.



Boolean Data Lesson
CS1313 Spring 2017  49

Short Circuit Example #3
int my_height_in_cm = 160;
char I_am_Henry = 1;
char I_am_short;
…
I_am_short =

I_am_Henry ||
(my_height_in_cm <
maximum_short_height_in_cm);

…
In the example above, the relational expression never gets 

evaluated, because the first operand in the OR operation 
(||) evaluates to 1, and therefore the entire OR operation 
must evaluate to 1.


	Boolean Data Outline
	Data Types
	C Boolean Data Type: char or int
	C Built-In Boolean Data Type: bool
	bool Data Type: Not Used in CS1313
	Boolean Declaration
	Boolean or Character?
	Boolean or Character Example #1
	Boolean or Character Example #2
	Boolean, Character or Integer? #1
	Boolean, Character or Integer? #1
	Boolean Literal Constants
	Using Boolean Literal Constants #1
	Using Boolean Literal Constants #2
	What is a Boolean Expression? #1
	What is a Boolean Expression? #2
	What is a Boolean Expression? #3
	What is a Boolean Expression? #4
	What is a Boolean Expression? #5
	Boolean Expressions
	Boolean Operations
	C Boolean Expression Evaluation Values
	Boolean Expression Example #1
	Boolean Expression Example #2
	Boolean Variables Example #1
	Boolean Variables Example #2
	Relational Operations #1
	Relational Operations #2
	Relational Expressions Example #1
	Relational Expressions Example #2
	Structure of Boolean Expressions
	Boolean Expressions with Parentheses
	Precedence Order of Boolean Operations
	Boolean Precedence Order Example #1
	Boolean Precedence Order Example #2
	Boolean Precedence Order Example
	Relational Expressions Example #1
	Relational Expressions Example #2
	Relational Expressions Example #3
	Relational Expressions Example #4
	Relational Expressions Example #5
	Relational Expressions Example #6
	Relational Expressions Example #7
	Why Not Use a < b < c? #1
	Why Not Use a < b < c? #2
	Short Circuiting
	Short Circuit Example #1
	Short Circuit Example #2
	Short Circuit Example #3

