Bit Representation Outline

1. Bit Representation Outline
2. How Are Integers Represented in Memory?
3. Decimal Number Representation (Base 10)
4. Decimal (Base 10) Breakdown
5. Nonal Number Representation (Base 9)
6. Nonal (Base 9) Breakdown
7. Octal Number Representation (Base 8)
8. Octal (Base 8) Breakdown
9. Trinary Number Representation (Base 3)
10. Trinary (Base 3) Breakdown
11. Binary Number Representation (Base 2)
12. Binary (Base 2) Breakdown & Conversion
13. Counting in Decimal (Base 10)
14. Counting in Nonal (Base 9)
15. Counting in Octal (Base 8)
16. Counting in Trinary (Base 3)
17. Counting in Binary (Base 2)
18. Counting in Binary (Base 2) w/Leading 0s
19. Counting in Binary Video
20. Adding Integers #1
21. Adding Integers #2
22. Binary Representation of int Values
How Are Integers Represented in Memory?

In computers, all data are represented as contiguous sequences of bits.

An integer is represented as a sequence of 8, 16, 32 or 64 bits. For example:

\[97 = \begin{array}{cccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & \\ \end{array} \]

What does this mean???
Decimal Number Representation (Base 10)

In the *decimal* number system (base 10), we have *10 digits*:

```
0 1 2 3 4 5 6 7 8 9
```

We refer to these as the *Arabic* digits. For details, see:

http://en.wikipedia.org/wiki/Arabic_numerals
Decimal (Base 10) Breakdown

\[
4721_{10} = 4000_{10} + 700_{10} + 20_{10} + 1_{10} =
\]

\[
4 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 1 \cdot 10^0
\]

Jargon: \(4721_{10}\) is pronounced “four seven two one base 10,” or “four seven two one one decimal.”
Nonal Number Representation (Base 9)

In the *nonal* number system (base 9), we have 9 digits:

```
0 1 2 3 4 5 6 7 8
```

NOTE: No one uses nonal in real life; this is just an example.
Nonal (Base 9) Breakdown

\[4721_9 = \]
\[4000_9 + \]
\[700_9 + \]
\[20_9 + \]
\[1_9 = \]
\[4 \cdot 1000_9 + \]
\[7 \cdot 100_9 + \]
\[2 \cdot 10_9 + \]
\[1 \cdot 1_9 = \]
\[4 \cdot 9^3 + \]
\[7 \cdot 9^2 + \]
\[2 \cdot 9^1 + \]
\[1 \cdot 9^0 = \]

So: \[4721_9 = 3502_{10} \]

Jargon: \[4721_9 \] is pronounced “four seven two one base 9,” or “four seven two one nonal.”
Octal Number Representation (Base 8)

In the **octal** number system (base 8), we have 8 **digits**: 0 1 2 3 4 5 6 7

NOTE: Some computer scientists used to use octal in real life, but it has mostly fallen out of favor, because it’s been supplanted by base 16 (**hexadecimal**). Octal does show up a little bit in C character strings.
Octal (Base 8) Breakdown

\[
4721_8 = 4 \cdot 512_{10} + 7 \cdot 64_{10} + 2 \cdot 8_{10} + 1 \cdot 1_{10} = 2513_{10}
\]

So: \(4721_8 = 2513_{10}\)

Jargon: \(4721_8\) is pronounced “four seven two one base 8,” or “four seven two one octal.”
Trinary Number Representation (Base 3)

In the **trinary** number system (base 3), we have **3 digits**: 0 1 2

NOTE: No one uses trinary in real life; this is just an example.
Trinary (Base 3) Breakdown

2021₃ =

\[
\begin{align*}
2000_3 & + \\
0_3 & + \\
20_3 & + \\
1_3 & = \\
2 \cdot 1000_3 & + \\
0 \cdot 100_3 & + \\
2 \cdot 10_3 & + \\
1 \cdot 1_3 & = \\
2 \cdot 3^3 & + \\
0 \cdot 3^2 & + \\
2 \cdot 3^1 & + \\
1 \cdot 3^0 & = \\
\end{align*}
\]

\[2 \cdot 27_{10} + 0 \cdot 9_{10} + 2 \cdot 3_{10} + 1 \cdot 1_{10} = 61_{10}\]

So: 2021₃ = 61₁₀

Jargon: 2021₃ is pronounced “two zero two one base 3,” or “two zero two one trinary.”
Binary Number Representation (Base 2)

In the **binary** number system (base 2), we have 2 **digits**:

```
    0 1
```

This is the number system that computers use internally.
Binary (Base 2) Breakdown & Conversion

\[01100001_2 = \]

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Calculation</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^7</td>
<td>0</td>
<td>0 \cdot 2^7</td>
<td>0 \cdot 128_{10}</td>
</tr>
<tr>
<td>2^6</td>
<td>1</td>
<td>1 \cdot 2^6</td>
<td>1 \cdot 64_{10}</td>
</tr>
<tr>
<td>2^5</td>
<td>1</td>
<td>1 \cdot 2^5</td>
<td>1 \cdot 32_{10}</td>
</tr>
<tr>
<td>2^4</td>
<td>0</td>
<td>0 \cdot 2^4</td>
<td>0 \cdot 16_{10}</td>
</tr>
<tr>
<td>2^3</td>
<td>1</td>
<td>1 \cdot 2^3</td>
<td>1 \cdot 8_{10}</td>
</tr>
<tr>
<td>2^2</td>
<td>0</td>
<td>0 \cdot 2^2</td>
<td>0 \cdot 4_{10}</td>
</tr>
<tr>
<td>2^1</td>
<td>0</td>
<td>0 \cdot 2^1</td>
<td>0 \cdot 2_{10}</td>
</tr>
<tr>
<td>2^0</td>
<td>1</td>
<td>1 \cdot 2^0</td>
<td>1 \cdot 1_{10}</td>
</tr>
</tbody>
</table>

\[97_{10} = \]

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^7</td>
<td>0</td>
</tr>
<tr>
<td>2^6</td>
<td>1</td>
</tr>
<tr>
<td>2^5</td>
<td>1</td>
</tr>
<tr>
<td>2^4</td>
<td>0</td>
</tr>
<tr>
<td>2^3</td>
<td>0</td>
</tr>
<tr>
<td>2^2</td>
<td>0</td>
</tr>
<tr>
<td>2^1</td>
<td>0</td>
</tr>
<tr>
<td>2^0</td>
<td>1</td>
</tr>
</tbody>
</table>

97_{10} = 01100001_2
Counting in Decimal (Base 10)

In **base 10**, we **count** like so:

0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

...

91, 92, 93, 94, 95, 96, 97, 98, 99, 100,

101, 102, 103, 104, 105, 106, 107, 108, 109, 110,

...

191, 192, 193, 194, 195, 196, 197, 198, 199, 200,

...

991, 992, 993, 994, 995, 996, 997, 998, 999, 1000,

...
Counting in Nonal (Base 9)

In **base 9**, we **count** like so:

0,

1, 2, 3, 4, 5, 6, 7, 8, 10,
11, 12, 13, 14, 15, 16, 17, 18, 20,
21, 22, 23, 24, 25, 26, 27, 28, 30,

... 81, 82, 83, 84, 85, 86, 87, 88, 100,
101, 102, 103, 104, 105, 106, 107, 108, 110,

... 181, 182, 183, 184, 185, 186, 187, 188, 200,

... 881, 882, 883, 884, 885, 886, 887, 888, 1000,

...
Counting in Octal (Base 8)

In **base 8**, we **count** like so:

0,
1, 2, 3, 4, 5, 6, 7, 10,
11, 12, 13, 14, 15, 16, 17, 20,
21, 22, 23, 24, 25, 26, 27, 30,
...
71, 72, 73, 74, 75, 76, 77, 100,
101, 102, 103, 104, 105, 106, 107, 110,
...
171, 172, 173, 174, 175, 176, 177, 200,
...
771, 772, 773, 774, 775, 776, 777, 1000,
...
Counting in Trinary (Base 3)

In **base 3**, we **count** like so:

0,
1, 2, 10,
11, 12, 20,
21, 22, 100,
101, 102, 110,
111, 112, 120,
121, 122, 200,
201, 202, 210,
211, 212, 220,
221, 222, 1000,
...

Counting in Binary (Base 2)

In **base 2**, we **count** like so:

0, 1,
10, 11,
100, 101, 110, 111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111
10000, ...

Counting in Binary (Base 2) w/Leading 0s

In **base 2**, we sometimes like to put in *leading zeros*:

00000000, 00000001,
00000010, 00000011,
00000100, 00000101, 00000110, 00000111,
00001000, 00001001, 00001010, 00001011,
00001100, 00001101, 00001110, 00001111
00010000, ...
Counting in Binary Video

https://img-9gag-fun.9cache.com/photo/aq7Q4AZ_460svvp9.webm
Adding Integers #1

<table>
<thead>
<tr>
<th></th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2⁶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2⁰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
97_{10} = \begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

+ \[
15_{10} = \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
112_{10} = \begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Adding Integers #2

<table>
<thead>
<tr>
<th></th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>97_{10} =</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$+ 06_{10}$ =</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>103_{10} =</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
% cat xadd.c
#include <stdio.h>

int main ()
{ /* main */
 int x;
 x = 97;
 printf("%d\n", x);
 x = x + 6;
 printf("%d\n", x);
 return 0;
} /* main */
% gcc -o xadd xadd.c
% xadd
 97
 103