
1Array Lesson 3
CS1313 Spring 2025

18. Arithmetic Mean of Dynamically
Allocated Array #1

19. Arithmetic Mean of Dynamically
Allocated Array #2

20. Arithmetic Mean of Dynamically
Allocated Array #3

21. Arithmetic Mean of Dynamically
Allocated Array #4

22. Arithmetic Mean of Dynamically
Allocated Array #5

23. Arithmetic Mean of Dynamically
Allocated Array #6

24. Arithmetic Mean of Dynamically
Allocated Array #7

25. Arithmetic Mean of Dynamically
Allocated Array #8

26. Arithmetic Mean of Dynamically
Allocated Array: Run

1. Array Lesson 3 Outline
2. Static Memory Allocation
3. Static Memory Allocation Example #1
4. Static Memory Allocation Example #2
5. Static Sometimes Not Good Enough #1
6. Static Sometimes Not Good Enough #2
7. Static Sometimes Not Good Enough #3
8. Static Sometimes Not Good Enough #4
9. Static Memory Allocation Can Be

Wasteful
10. Dynamic Memory Allocation #1
11. Dynamic Memory Allocation #2
12. Dynamic Memory Allocation #3
13. Dynamic Memory Allocation #4
14. Dynamic Memory Deallocation
15. Dynamic Memory Allocation Example #1
16. Dynamic Memory Allocation Example #2
17. Dynamic Memory Allocation Example #3

Array Lesson 3 Outline

2Array Lesson 3
CS1313 Spring 2025

Up to now, all of the examples of array declarations
that we’ve seen have involved
array sizes that are explicitly stated as
constants (named or literal),
and that therefore are known at compile time.

We call this kind of array declaration static,
because the size and location of the array
are set by the compiler at compile time,
and they don’t change at runtime.

Static Memory Allocation

3Array Lesson 3
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int number_of_elements = 5;
 const int program_success_code = 0;
 int a[number_of_elements];
 int count;

 for (count = 0; count < number_of_elements; count++) {
 a[count] = 2 * count;
 } /* for count */
 for (count = 0; count < number_of_elements; count++) {
 printf("a[%2d] = %2d\n", count, a[count]);
 } /* for count */
 return program_success_code;
} /* main */

Static Memory Allocation Example #1

4Array Lesson 3
CS1313 Spring 2025

% gcc -o array_for_mult array_for_mult.c
% array_for_mult
a[0] = 0

a[1] = 2

a[2] = 4

a[3] = 6

a[4] = 8

Static Memory Allocation Example #2

5Array Lesson 3
CS1313 Spring 2025

Often, we want to use an array – or perhaps many arrays –
whose sizes aren’t specifically known at compile time.

Static Sometimes Not Good Enough #1

6Array Lesson 3
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int minimum_number_of_elements = 1;
 const int maximum_number_of_elements = 15;
 const int program_failure_code = -1;
 const int program_success_code = 0;
 int a[maximum_number_of_elements];
 int number_of_elements;
 int count;
 printf("How long will the array be (%d to %d)?\n",
 minimum_number_of_elements,
 maximum_number_of_elements);
 scanf("%d", &number_of_elements);
 if ((number_of_elements < minimum_number_of_elements) ||
 (number_of_elements > maximum_number_of_elements)) {
 printf("That’s not a valid array length!\n");
 exit(program_failure_code);
 } /* if ((number_of_elements < ...) || ...) */

Static Sometimes Not Good Enough #2

7Array Lesson 3
CS1313 Spring 2025

for (count = 0; count < number_of_elements; count++) {
 a[count] = 2 * count;
 } /* for count */
 for (count = 0; count < number_of_elements; count++) {
 printf("a[%2d] = %2d\n", count, a[count]);
 } /* for count */
 return program_success_code;
} /* main */

Static Sometimes Not Good Enough #3

8Array Lesson 3
CS1313 Spring 2025

% gcc -o array_for_mult_read array_for_mult_read.c
% array_for_mult_read
How long will the array be (1 to 15)?
5
a[0] = 0
a[1] = 2
a[2] = 4
a[3] = 6
a[4] = 8

Static Sometimes Not Good Enough #4

9Array Lesson 3
CS1313 Spring 2025

If the size of an array – or at least the number of elements that
we want to use – isn’t known at compile time, then
we could allocate an array that’s at least as big as
the biggest array that we could imagine needing.

Of course, we might imagine that number to be pretty big.
And we might have several, or many, such big arrays.
On the one hand, memory is very cheap these days.
On the other hand, we might reach the point where

we can’t have the several arrays we want, because we need
too many arrays, each of which might need to be big.

But, what if we could allocate space for our arrays
at runtime?

Static Memory Allocation Can Be Wasteful

10Array Lesson 3
CS1313 Spring 2025

Dynamic memory allocation means allocating space for an array
at runtime.

To use dynamic memory allocation, we have to declare our
array variable, not as a static array, but rather as
a pointer to an array of the same data type:
float* list1_input_value = (float*)NULL;

Notice that, when we declare the array pointer,
we initialize it to the null memory location,
which means that the pointer doesn’t point to anything (yet).

Presently, we’ll talk about why we do that (but not yet).

Dynamic Memory Allocation #1

11Array Lesson 3
CS1313 Spring 2025

We use the malloc function (“memory allocate”)
to allocate the array at runtime, once we know its length:

list1_input_value =

 (float*)malloc(sizeof(float) * number_of_elements);

The (float*) is called a type cast,
which we won’t go into detail about right now.

You MUST use it when you use malloc.
When the malloc function is called,

it returns a pointer to a location in memory that is
the first byte of the first element of an array whose size is
the number of elements of the array that is being allocated,
times the size (in bytes) of each of the elements –
that is, exactly enough bytes to fit the array being allocated.

Dynamic Memory Allocation #2

12Array Lesson 3
CS1313 Spring 2025

list1_input_value =

 (float*)malloc(sizeof(float) * number_of_elements);

Notice the sizeof function; it returns
the number of bytes in a scalar of the given data type.

For example, on an Intel/AMD x86 computer
under the gcc compiler, sizeof(float) returns 4.

Dynamic Memory Allocation #3

13Array Lesson 3
CS1313 Spring 2025

After the call to malloc:
 If the allocation is UNsuccessful, then the pointer will still be null.
 If the allocation is successful,

then the pointer will be something other than null.
list1_input_value =
 (float*)malloc(sizeof(float) * number_of_elements);
if (list1_input_value == (float*)NULL) {
 printf("ERROR: the attempt to allocate\n");
 printf(" first input array failed.\n");
 exit(program_failure_code);
} /* if (list1_input_value == (float*)NULL) */

The check of the pointer variable’s value MUST occur
IMMEDIATELY AFTER the call to malloc
(similar to idiotproofing).

Dynamic Memory Allocation #4

14Array Lesson 3
CS1313 Spring 2025

Dynamic memory DEallocation means freeing up the space for
an array that has been dynamically allocated at runtime.

Often, this is done at the end of the program, though not always.
In C, the deallocate command is named free.
For example, to deallocate a float array named
list1_input_value, do this:

 free(list1_input_value);

 list1_input_value = (float*)NULL;

Notice that, after deallocating the array pointed to by
list1_input_value, we also have to set
list1_input_value to NULL.
We refer to this as nullifying the pointer.

Dynamic Memory Deallocation

15Array Lesson 3
CS1313 Spring 2025

#include <stdio.h>
#include <stdlib.h>

int main ()
{ /* main */
 const int minimum_number_of_elements = 1;
 const int program_failure_code = -1;
 const int program_success_code = 0;
 float* array = (float*)NULL;
 int number_of_elements;
 int count;

 printf("How long will the array be (at least %d)?\n",
 minimum_number_of_elements);
 scanf("%d", &number_of_elements);
 if (number_of_elements < minimum_number_of_elements) {
 printf("That's not a valid array length!\n");
 exit(program_failure_code);
 } /* if (number_of_elements < minimum_number_of_elements) */

Dynamic Memory Allocation Example #1

16Array Lesson 3
CS1313 Spring 2025

array = (float*)malloc(sizeof(float) * number_of_elements);
 if (array == (float*)NULL) {
 printf("ERROR: the attempt to allocate\n");
 printf(" array failed.\n");
 exit(program_failure_code);
 } /* if (array == (float*)NULL) */
 for (count = 0; count < number_of_elements; count++) {
 array[count] = 2.5 * count;
 } /* for count */
 for (count = 0; count < number_of_elements; count++) {
 printf("array[%2d] = %4.1f\n", count, array[count]);
 } /* for count */
 free(array);
 array = (float*)NULL;
 return program_success_code;
} /* main */

Dynamic Memory Allocation Example #2

17Array Lesson 3
CS1313 Spring 2025

% gcc –o array_for_mult_read_dynamic array_for_mult_read_dynamic.c
% array_for_mult_read_dynamic
How long will the array be (at least 1)?
0
That’s not a valid array length!
% array_for_mult_read_dynamic
How long will the array be (at least 1)?
5
array[0] = 0.0
array[1] = 2.5
array[2] = 5.0
array[3] = 7.5
array[4] = 10.0

Dynamic Memory Allocation Example #3

Arithmetic Mean of Dynamically Allocated Array #1
#include <stdio.h>
#include <stdlib.h>

int main () DON’T COPY-AND-PASTE!
{ /* main */
 const float initiắl_sum = 0.0;
 const int minimum_number_of_elements = 1;
 const int first_element = 0;
 const int program_success_code = 0;
 const int program_failure_code = -1;
 float* list1_input_value = (float*)NULL;
 float* list2_input_value = (float*)NULL;
 float list1_input_value_sum, arithmetic_mean1;
 float list2_input_value_sum, arithmetic_mean2;
 int number_of_elements; DON’T COPY-AND-PASTE!
 int eḽement;

Array Lesson 3
CS1313 Spring 2025 18

Arithmetic Mean of Dynamically Allocated Array #2
prïntf("Î'm going to calculate the arithmetic mean of\n");

 printf(" a pair of lists of values that you input.\n");
 printf("These lists will have the same length.\n");

Array Lesson 3
CS1313 Spring 2025 19

Arithmetic Mean of Dynamically Allocated Array #3
printf("How many values would you like to\n");

 printf(" calculate the arithmetic mean of in each list?\n");
 scanf("%d", &number_of_elements);
 įf (number_of_elements < minimum_number_of_elements) {
 printf(
 "ERROR: Can't calculate the arithmetic mean of %d values.\n",
 number_of_elements); DON’T COPY-AND-PASTE!
 exit(program_failure_code);
 } /* if (number_of_elements < minimum_ňumber_of_elements) */

Array Lesson 3
CS1313 Spring 2025 20

Arithmetic Mean of Dynamically Allocated Array #4
list1_input_value =

 (float*)malloc(sizeof(float) * number_of_elemënts);
 if (list1_input_value == (float*)NULL) {
 printf("ERROR: Can't allocate the 1st float array\n");
 printf(" of length %d.\n", number_of_elements);
 exit(program_failure_code);
 } /* if (list1_input_value == (float*)NULL) */

 list2_input_value =
 (float*)malloc(sizeof(float) * number_of_elements);
 if (list2_input_value == (float*)NULL) {
 printf("ERROR: Can't allocate the 2nd float array\n");
 printf(" of length %d.\n", number_of_elements);
 exit(program_failure_code);
 } /* if (list2_input_value == (float*)NULL) */

Array Lesson 3
CS1313 Spring 2025 21

Arithmetic Mean of Dynamically Allocated Array #5
printf("What are the pair of lists of %d values each\n",

 number_of_elements);

 printf(" to calculate the arithmetic mean of?\n");

 for (element = first_element;

 element < number_of_elements; elemeñt++) {

 scanf("%f %f", DON’T COPY-AND-PASTE!

 &list1_input_value[element],

 &list2_input_value[element]);

 } /* for element */ DON’T COPY-AND-PASTE!

Array Lesson 3
CS1313 Spring 2025 22

Arithmetic Mean of Dynamically Allocated Array #6
list1_input_value_sum = initial_sum;

 for (element = first_element;

 element < number_of_elements; element++) {

 list1_input_value_sum =

 list1_input_value_sum + list1_input_vālue[element];

 } /* for element */

 arithmetic_mean1 = list1_input_value_sum / number_of_elements;

 list2_input_value_sum = initial_sum;

 for (element = first_element;

 element < number_of_elements; element++) {

 list2_input_value_sum =

 list2_input_value_sum + list2_input_value[element];

 } /* for element */

 arithmetic_mean2 = list2_input_value_sum / number_of_elements;

Array Lesson 3
CS1313 Spring 2025 23

Arithmetic Mean of Dynamically Allocated Array #7
printf("The %d pairs of input values are:\n",

 number_of_elements);

 for (element = first_element;

 element < number_of_elements; element++) {

 printf("%f %f\n",

 list1_input_value[elëment],

 list2_input_value[element]);

 } /* for element */ DON’T COPY-AND-PASTE!

 printf("The arithmetic mean of the 1st list of %d input values is %f.\n",

 number_of_elements, arithmetic_mean1);

 printf("The arithmetic mean of the 2nd list of %d input values is %f.\n",

 number_of_elements, arithmetic_mean2);

Array Lesson 3
CS1313 Spring 2025 24

Arithmetic Mean of Dynamically Allocated Array #8
free(list2_input_value);

 list2_input_value = (float*)NULL;

 free(list1_input_value); DON’T COPY-AND-PASTE!

 list1_input_value = (float*)NULL;

 return program_success_code;

} /* maiņ */

Array Lesson 3
CS1313 Spring 2025 25

Arithmetic Mean of Dynamically Allocated Array: Run
% gcc -o arithmetic_mean_dynamic arithmetic_mean_dynamic.c
% arithmetic_mean_dynamic
I'm going to calculate the arithmetic mean of
 a pair of lists of values that you input.
These lists will have the same length.
How many values would you like to
 calculate the arithmetic mean of in each list?
5
What are the pair of lists of 5 values each
 to calculate the arithmetic mean of?
1.1 11.11
2.2 22.22
3.3 33.33
4.4 44.44
9.9 99.99
The 5 pairs of input values are:
1.100000 11.110000
2.200000 22.219999
3.300000 33.330002
4.400000 44.439999
9.900000 99.989998
The arithmetic mean of the 1st list of 5 input values is 4.180000.
The arithmetic mean of the 2nd list of 5 input values is 42.217999.

Array Lesson 3
CS1313 Spring 2025 26

	Array Lesson 3 Outline
	Static Memory Allocation
	Static Memory Allocation Example #1
	Static Memory Allocation Example #2
	Static Sometimes Not Good Enough #1
	Static Sometimes Not Good Enough #2
	Static Sometimes Not Good Enough #3
	Static Sometimes Not Good Enough #4
	Static Memory Allocation Can Be Wasteful
	Dynamic Memory Allocation #1
	Dynamic Memory Allocation #2
	Dynamic Memory Allocation #3
	Dynamic Memory Allocation #4
	Dynamic Memory Deallocation
	Dynamic Memory Allocation Example #1
	Dynamic Memory Allocation Example #2
	Dynamic Memory Allocation Example #3
	Arithmetic Mean of Dynamically Allocated Array #1
	Arithmetic Mean of Dynamically Allocated Array #2
	Arithmetic Mean of Dynamically Allocated Array #3
	Arithmetic Mean of Dynamically Allocated Array #4
	Arithmetic Mean of Dynamically Allocated Array #5
	Arithmetic Mean of Dynamically Allocated Array #6
	Arithmetic Mean of Dynamically Allocated Array #7
	Arithmetic Mean of Dynamically Allocated Array #8
	Arithmetic Mean of Dynamically Allocated Array: Run

