Array Lesson 1 Outline

PR DD =

p—t ek ek ek ek e e \O
NIRRT

[E—
~

Array Lesson 1 Outline 18.
Arithmetic Mean of a List of Numbers 19
Arithmetic Mean: Declarations 20.
Arithmetic Mean: Greeting, Input

Arithmetic Mean: Calculation 21.
Arithmetic Mean: Output 22.
Arithmetic Mean: Compile, Run 23.
Arithmetic Mean: 5 Input Values 24.
Arithmetic Mean: 7 Input Values 25,
Arithmetic Mean: One Line Different 26.
Arithmetic Mean: Compile, Run for 5 27.
Arithmetic Mean: Compile, Run for 7 28.
Scalars #1 29.
Scalars #2 30.
Another Scalar Example 31,
A Similar Program, with 32.
Multiplication 33.
A Similar Program, with a Twist g;‘

R

Arrays
Array Element Properties
Array Properties #1

Array Properties #2

Array Properties #3

Array Properties #4

Array Properties #5

Array Indices #1

Array Indices #2

Multidimensional Arrays & 1D Arrays
Array Declarations #1

Array Declarations #2

Array Declarations #3

Assigning a Value to an Array Element
Array Element Assignment Example
Getting Array Element Value with scanf
Array Element scanf Example #1
Array Element scanf Example #2

Array Lesson 1 1
CS1313 Spring 2025

Arithmetic Mean of a List of Numbers

Consider a list of real numbers of length n elements:
X1y Xy X3y eey X,

The arithmetic mean (average) of this list 1s:
(x;+x,+x;+...+x)/n

Array Lesson 1
CS1313 Spring 2025

Arithmetic Mean: Declarations

#include <stdio.h>

int main

{ /* main
const
const
const
const
float
float
float
int

R

()

*/

float initial sum = 0.0;
int number of elements = 5;
int first element = 07
int program success code = 0;
input value[number of elements];

sum;
arithmetic mean;
element;

Array Lesson 1
CS1313 Spring 2025

Arithmetic Mean: Greeting, Input

printf ("I'm going to calculate the\n");

printf (" arithmetic mean of a list ");

printf ("of length %d values.\n",
number of elements);

printf ("What are the %$d values of the list?\n"
number of elements);

for (element = first element;
element < number of elements; element++)
scanf ("%f", &input valuel[element]);

} /* for element */

Array Lesson 1
CS1313 Spring 2025

’

{

Arithmetic Mean: Calculation

sum = initial sum;

for (element = first element;
element < number of elements; element++) {
sum += input valuel[element];

} /* for element */

arithmetic_mean = sum / number_of_elements;

Array Lesson 1
CS1313 Spring 2025

Arithmetic Mean: Output

printf ("The %d input values of the list are:\n",
number of elements);

for (element = first element;

element < number of elements; element++) {

printf ("Sf ", i1nput valuelelement]);

} /* for element */

printf ("\n");

printf ("The arithmetic mean of the %d values",
number of elements);

printf (" in the list is %f.\n",
arithmetic mean);

return program success code;

} /* main */

Array Lesson 1
CS1313 Spring 2025

Q| Arithmetic Mean: Compile, Run

gcc -o arithmetic mean5 arithmetic mean5.c

5 arithmetic_mean5
I'm going to calculate the
arithmetic mean of a list of length 5 wvalues.
What are the 5 values of the 1list?
123.25 234.50 345.75 456.00 567.25
The 5 input values of the list are:
123.250000 234.500000 345.750000 456.000000 567.250000
The arithmetic mean of the 5 values in the list is 345.350006.

Array Lesson 1 7
CS1313 Spring 2025

Arithmetic Mean: 5 Input Values

#include <stdio.h>

int main

{ /* main
const
const
const
const
float
float
float
int

R

()

*/

float initial sum = 0.0
int number of elements =<:>
int first element = 07
int program success code = 0;
input value[number of elements];

sum;
arithmetic mean;
element;

Array Lesson 1
CS1313 Spring 2025

Arithmetic Mean: 7 Input Values

#include <stdio.h>

int main ()
{ /* main */

const float 1nitial sum = 0.0;
const 1int number of elements =<:>
const 1nt first element = 07
const 1int program success code = 0;
float input value[number of elements];

float sum;
float arithmetic mean;
int element;

The rest of the program is
EXACTLY THE SAME!

Array Lesson 1
CS1313 Spring 2025

Q| Arithmetic Mean: One Line Different

5 diff arithmetic mean5.c arithmetic mean7.c

6co
< const int number of elements = 5;
> const int number of elements = 7;

The diff Unix command compares two files of text and
shows which lines are different.

The only statement that differs between arithmetic meanb5.c
and arithmetic mean7.c 1s the declaration of
number of elements.

Array Lesson 1 10
CS1313 Spring 2025

Q| Arithmetic Mean: Compile, Run for 5

% gcc -o arithmetic mean5 arithmetic mean5.c
[©)
o

arithmetic_mean5
I'm going to calculate the
arithmetic mean of a list of length 5 wvalues.
What are the 5 values of the list?
123.25 234.50 345.75 456.00 567.25
The 5 input values of the list are:
123.250000 234.500000 345.750000 456.000000 567.250000
The arithmetic mean of the 5 values in the list is 345.350006.

Array Lesson 1
CS1313 Spring 2025

11

Q| Arithmetic Mean: Compile, Run for 7

% gcc -o arithmetic mean7 arithmetic mean7.c
Q
o

arithmetic_mean?7
I'm going to calculate the
arithmetic mean of a list of length 7 wvalues.
What are the 7 values of the 1list?
12.75 23.75 34.75 45.75 56.75 67.75 78.75
The 7 input values of the list are:
12.750000 23.750000 34.750000 45.750000 56.750000 67.750000 78.750000
The arithmetic mean of the 7 values in the 1list is 45.750000.

Array Lesson 1 12
CS1313 Spring 2025

[¢]

% cat scalar names.c

#include <stdio.h>

int main ()
{ /* main */
int b, c,

Hh® Q. Q O
L | B I |

return 0;
} /* main */

R

d,

e, L;

sd\n",
sd\n",
sd\n",
$d\n",
$d\n",

Scalars #1

HO® O QO

o\°

gcc -o scalar names \

scalar names.c
scalar names

o\°

b =0
c = 2
d =4
e = 6
f 8

Note that, in Unix, a
backslash at the end of
a Unix command line
means: “continue this
Unix command on the
next line.”

Ne Neoe WMo No o

Array Lesson 1 13
CS1313 Spring 2025

[¢]

% cat scalar names.c

#include <stdio.h>

int main ()

{ /* main */

int b,

Hh® Q. Q O
L | B I |

return

P e O U S

Cy

0

} /* main */

R

"b
"c
"d
"e
"t
’

d,

S

sd\n",
sd\n",
sd\n",
sd\n",
sd\n",

t;

Scalars #2

All of the variables in
the program are simple
int variables. Each of the

individual int wvariables has
a single name,
a single address,

0, @ single data type and

c); asingle value.

%i . Such variables, whether their type

1S int, float, char or
whatever, are referred to as
scalar variables.

Array Lesson 1

CS1313 Spring 2025 14

Another Scalar Example

5 cat scalar a.c $ gcc -o scalar a \

#include <stdio.h>

int main ()

scalar a.c
5 scalar a

{ /*_main * / 20 = 0
int a0, al, a2, a3, a4; 41 = 2
a0 = 0; az = 4
al = 2; a3 = 6
a2 = 4; ad = 8
a3 = 6; .
ad = 8; The only difference between
printf ("a0 = %$d\n", a0); hi d
printf ("al = %dsn", al); this program an
printf ("a2 = %d\n", a2); . .
P rintf("a3 — sd\n". a3). the previous program 1s
printf ("a4 = %d\n", a4); the names of the scalar

} /* main */

R

variables (and therefore
some of the output).

Array Lesson 1 1
CS1313 Spring 2025 5

A Similar Program, with Multiplication

% cat scalar;mult.c
#include <stdio.h>

int main ()
{ /* main */
int a0, al,

a0
al

Q

N
| I T | |
* ok o of X

- - - - -
- - - - -

W NEFPONDDNDNDDNDDN

} /* main */

R

Ne Neo Neo No N

a2, a3,

sd\n",
sd\n",
sd\n",
sd\n",
sd\n",

[¢]

=

[e]

[¢]

=

[e]

ad =

gcc -o scalar mult \

scalar mult.c

scalar mult

= 0
= 2
4
6
8

Notice that, in this program,

a0

ad; a1
az
a3

a0);

al);

az);

al3);

ad);

Array Lesson 1
CS1313 Spring 2025

the values of the

scalar variables are
obtained by multiplying
a constant by

the number associated
with the scalar variable.

16

A Similar Program, with a Twist

[¢]

% cat array mult.c % gcc -o array mult \

#include <stdio.h> array mult.c

array mult

o\°

int main ()

{ /*_main */ al[0] = 0
int al[b5]; al[l] = 2
al0] =0 * 2; alz2] = 4
all] =1 * 2; al[3] = ©
al2] = 2 * 2; ald4] = 8
al3] = 3 * 2;
al4] = 4 * 2;
printf("a[0] = %d\n", a[0]); Huh?
printf ("a[l] = %d\n", all]);
printf ("a[2] = %d\n", al2]);
printf ("a[3] = %d\n", al3]);
printf ("a[4] = %d\n", al4]);

return 0O;
} /* main */

Array Lesson 1 1
CS1313 Spring 2025 7

Arrays

int al[b5];

An array 1s a special kind of variable. Like a scalar variable,
an array has:

m a name;
m an address;
= a data type.

But instead of an array having exactly one single value,
it can have multiple values.

Each of these values 1s referred to as an element of the array.

If you’re familiar with vectors in mathematics,
you can think of an array as the equivalent idea,
but in computing instead of in mathematics.

Array Lesson 1 18
CS1313 Spring 2025

Array Element Properties

Each of the elements of an array 1s just about
exactly like a scalar variable of the same data type.

An element of an array has:

1. aname, which 1t shares with all of the other elements of
the array that it belongs to;

an address, which we’ll learn about shortly;

3. a data type, which 1t shares with all of the other elements
of the array that 1t belongs to;

4. asingle value.

But, an element of an array also has:

5. anindex, which we’ll learn about shortly.

Array Lesson 1 19
CS1313 Spring 2025

Array Properties #1

int al[b5];

An array as a whole has the following properties:

1. It has a data type, which is the data type of
each of its elements; for example, int.

Array Lesson 1
CS1313 Spring 2025

20

Array Properties #2

int al[b5];

An array as a whole has the following properties:

2. It as a dimension attribute, sometimes called its length,

which describes the number of elements in the array;
for example, [5].

Array Lesson 1 1
CS1313 Spring 2025

Array Properties #3

int al[b5];

An array as a whole has the following properties:

3. It has exactly as many values as it has elements,
and 1n fact each of its elements contains
exactly one of its values.

Array Lesson 1
CS1313 Spring 2025

22

Array Properties #4

int al[b5];

An array as a whole has the following properties:

4. Its elements are accessed via indexing with respect to
the variable name; for example,

al2] = 7;

Array Lesson 1
CS1313 Spring 2025

23

Array Properties #5

int al[b5];

An array as a whole has the following properties:

5. Its elements are contiguous in memory; for example,

al0] 222222272 | Address 12340
all] PRP277°°° Address 12344
al2] PRP277°°° Address 12348
al3] PRP277°°° Address 12352
ald] PRP277°°° Address 12356

Array Lesson 1
CS1313 Spring 2025

24

Q| Array Indices #1

int al[b5];

We access a particular element of an array using
index notation:

al2]
This notation 1s pronounced “a of 2” or “a sub 2.”

The number 1n square brackets — for example, the 2 1n a[2]
— 1s called the index or subscript of the array element.

Array 1ndices are exactly analogous to subscript numbers in
mathematics:

dg, 41, dy, A3, Ay

Array Lesson 1 5
CS1313 Spring 2025 5

Array Indices #2

int al[b5];

An individual element of an array — for example, a[2] —
has exactly the same properties as a scalar variable of
the same data type — except for being accessed via
indexing.

Notice that the elements of an array are numbered
from O through (length - 1);
in the above example, the elements of a are

al0], all], al2], al3], al4]

Array Lesson 1 26
CS1313 Spring 2025

Multidimensional Arrays & 1D Arrays

An array can have multiple dimensions:
int array2d[8][5];

In CS1313, we’re going to focus on arrays of
only one dimension.

A one-dimensional array 1s sometimes called a vector,
because of the close relationship between
arrays in computing and vectors in mathematics.

A two-dimensional array 1s sometimes called a matrix.

A three-dimensional array 1s sometimes called a field.

Array Lesson 1
CS1313 Spring 2025

27

Array Declarations #1

The general form of an array declaration is:

type arraynamel [dimensionl], arrayname? [dimension2], ...;

For example:
int a[8], bl[4], cl[9];

causes the compiler to set up three int arrays in memory.

Array Lesson 1
CS1313 Spring 2025

28

Array Declarations #2

int a[5], bl4], c[9];

causes the compiler to set up three int arrays in memory,
like so:

Array Lesson 1 7
CS1313 Spring 2025 9

Array Declarations #3

int af[8], bfl4], cl[9];

In principle, these arrays could be remote from each other in
memory (for example, a could start at address 12340,
b could start at address 67890 and
c could start at address 981439294).

In practice, they are usually contiguous or almost contiguous
in memory; that 1s, the last byte of array a will typically
be right next to the first byte of array b, and
the last byte of array b will typically be right next to
the first byte of array c.

However, the compiler isn’t required to make
the different arrays contiguous in memory.

The only contiguity constraint 1s that, within each array,
all of the elements are contiguous and sequential.

Array Lesson 1 30
CS1313 Spring 2025

Assigning a Value to an Array Element

Because an individual array element 1s exactly analogous to
a scalar variable, we can assign or input a value into it
in exactly the same ways that we assign or input values into
scalar variables.

For example, we can use a scalar assignment for
cach individual element.

Array Lesson 1 31
CS1313 Spring 2025

Array Element Assignment Example

% cat arrayeltassn.c $ gcc -o arrayeltassn \
#include <stdio.h> arrayeltassn.c
%n;*maip (l/ % arrayeltassn
main
int al[3]; al0l =5
2101 = 5 all] = 16
all] = 16; alzl = =77
alz2] = =-77;
printf ("a[0] = %d\n",
al0]);
printf ("a[l] = %d\n",
alll]);
printf ("a[2] = %d\n",
al2l);

return 0;
} /* main */

Array Lesson 1 32
CS1313 Spring 2025

Getting Array Element Value with scanf

Just as we can assign a value to an individual array element,
we can use scanf to obtain the value of

cach individual array element.

Array Lesson 1
CS1313 Spring 2025 33

Array Element scanf Example #1

#include <stdio.h>
int main ()
{ /* main */

float al[3];

printf ("Input al[0],all],al2]:\n");
scanf ("$f $f Sf", &al[0], &all], &al[2]);
printf ("a[0] = %f\n", al[0]);

printf ("a[l] = %$f\n", all]);

printf ("a[2] = %$f\n", al2]);

return 0O;
} /* main */

Array Lesson 1
CS1313 Spring 2025

34

Array Element scanf Example #2

gcc -o arrayeltread arrayeltread.c

% arrayeltread
Input af[0],all]l,al2]:

5.5 16.16 -770.770

al0] = 5.500000
all] = 16.160000
al2] = =-770.770020

Array Lesson 1
CS1313 Spring 2025

	Array Lesson 1 Outline
	Arithmetic Mean of a List of Numbers
	Arithmetic Mean: Declarations
	Arithmetic Mean: Greeting, Input
	Arithmetic Mean: Calculation
	Arithmetic Mean: Output
	�Arithmetic Mean: Compile, Run
	Arithmetic Mean: 5 Input Values
	Arithmetic Mean: 7 Input Values
	Arithmetic Mean: One Line Different
	�Arithmetic Mean: Compile, Run for 5
	Arithmetic Mean: Compile, Run for 7
	Scalars #1
	Scalars #2
	Another Scalar Example
	A Similar Program, with Multiplication
	A Similar Program, with a Twist
	Arrays
	Array Element Properties
	Array Properties #1
	Array Properties #2
	Array Properties #3
	Array Properties #4
	Array Properties #5
	Array Indices #1
	Array Indices #2
	Multidimensional Arrays & 1D Arrays
	Array Declarations #1
	Array Declarations #2
	Array Declarations #3
	Assigning a Value to an Array Element
	Array Element Assignment Example
	Getting Array Element Value with scanf
	Array Element scanf Example #1
	Array Element scanf Example #2

