
1CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

15. Single Mode Arithmetic
16. int vs float Arithmetic
17. int vs float Division
18. int Division Truncates
19. Division By Zero
20. Division By Zero Example #1
21. Division By Zero Example #2
22. Floating Point Exception
23. Mixed Mode Arithmetic #1
24. Mixed Mode Arithmetic #2
25. Promoting an int to a float
26. Programming Exercise

1. Arithmetic Expressions Lesson #2 Outline
2. Named Constant & Variable Operands #1
3. Named Constant & Variable Operands #2
4. Named Constant & Variable Operands #3
5. Constant-Valued Expressions #1
6. Constant-Valued Expressions #2
7. Constant-Valued Expressions #3
8. Assignments W/O Expressions: Not Very

Useful
9. Assignments with Expressions: Crucial
10. Meaning of Assignment w/Expression
11. Assignment w/Expression Example
12. Assignment w/Same Variable on Both Sides
13. Same Variable on Both Sides: Meaning
14. Same Variable on Both Sides: Example

Arithmetic Expressions Lesson #2 Outline

2CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

So far, many of the examples of expressions that we’ve looked at
have used numeric literal constants as operands.

But of course we already know that
using numeric literal constants in the body of a program is
BAD BAD BAD.

So instead, we want to use named constants and variables
as operands.

Named Constant & Variable Operands #1

3CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const int days_in_a_year = 365;
 const int hours_in_a_day = 24;
 const int minutes_in_an_hour = 60;
 const int seconds_in_a_minute = 60;
 const int program_success_code = 0;
 int year_of_birth, current_year, age_in_seconds;

 printf("Let me guess your age in seconds!\n");
 printf("What year were you born?\n");
 scanf("%d", &year_of_birth);
 printf("What year is this?\n");
 scanf("%d", ¤t_year);
 age_in_seconds =
 (current_year - year_of_birth) *
 days_in_a_year * hours_in_a_day *
 minutes_in_an_hour * seconds_in_a_minute;
 printf("I'd guess that your age is about");
 printf(" %d seconds.\n", age_in_seconds);
 return program_success_code;
} /* main */

Named Constant & Variable Operands #2

4CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% gcc -o age_in_seconds age_in_seconds.c
% age_in_seconds
Let me guess your age in seconds!

What year were you born?

1985
What year is this?

2024
I'd guess that your age is about 1229904000 seconds.

Named Constant & Variable Operands #3

5CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

A constant-valued expression is an expression all of whose terms
are constants (so its value, when evaluated, is also a constant).

If we have an expression whose terms are all constants
(either literal constants or named constants), then we can use
that expression in the initialization of a named constant:

const float C_to_F_factor = 9.0 / 5.0;

const float C_to_F_increase = 32.0;

const float C_water_boiling_temperature = 100.0;

const float F_water_boiling_temperature =

 C_water_boiling_temperature *

 C_to_F_factor + C_to_F_increase;

Constant-Valued Expressions #1

6CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

#include <stdio.h>

int main ()
{ /* main */
 const float C_to_F_factor = 9.0 / 5.0;
 const float C_to_F_increase = 32.0;
 const float C_water_boiling_temperature = 100.0;
 const float F_water_boiling_temperature =
 C_water_boiling_temperature *
 C_to_F_factor + C_to_F_increase;

 printf("Water boils at %f degrees C,\n",
 C_water_boiling_temperature);
 printf(" which is %f degrees F.\n",
 F_water_boiling_temperature);
} /* main */

NOTE: In the initialization of a named constant,
we CANNOT have an expression whose value is NOT a constant.

Constant-Valued Expressions #2

7CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% gcc -o constant_expression constant_expression.c
% constant_expression
Water boils at 100.000000 degrees C,

 which is 212.000000 degrees F.

NOTE: In the initialization of a named constant,
we CANNOT have an expression whose value is NOT a constant.

Constant-Valued Expressions #3

8CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

So far, many of the assignment statements that we’ve seen
have simply assigned a literal value to a variable:

% cat variable_assignment.c
#include <stdio.h>

int main ()
{ /* main */
 int x;
 x = 5;
 printf("x = %d\n", x);
} /* main */
% gcc -o variable_assignment variable_assignment.c
% variable_assignment
x = 5
Unfortunately, this is not very interesting and

won’t accomplish much in an actual real life program.
To make a program useful, most of the assignments

have to have expressions on the right hand side.

Assignments W/O Expressions: Not Very Useful

9CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% cat triangle_area.c
#include <stdio.h>

int main ()
{ /* main */
 const float height_factor = 0.5;
 float base, height, area;

 printf("This program calculates the area of a\n");
 printf(" triangle from its base and height.\n");
 printf("What are the base and height?\n");
 scanf("%f %f", &base, &height);
 area = height_factor * base * height;
 printf("The area of a triangle of base %f\n", base);
 printf(" and height %f is %f.\n", height, area);
} /* main */
% gcc -o triangle_area triangle_area.c
% triangle_area
This program calculates the area of a
 triangle from its base and height.
What are the base and height?
5 7
The area of a triangle of base 5.000000
 and height 7.000000 is 17.500000.

Assignments with Expressions: Crucial

10CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

Suppose that we have an expression on the right hand side of
an assignment:

x = y + 1;
Remember:
 An assignment statement is an ACTION, NOT an equation.
This means:
 first, evaluate the expression that’s on the right hand side

of the assignment operator (single equals sign);
 then, put the resulting value into the variable that’s on the

left side of the assignment operator (single equals sign).
In the example above, the assignment statement means:
 “evaluate y + 1, then put the resulting value into x.”

Meaning of Assignment w/Expression

11CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% cat x_gets_y_plus_1.c
#include <stdio.h>

int main ()
{ /* main */
 int x, y;

 y = 5;
 printf("y = %d\n", y);
 x = y + 1;
 printf("x = %d\n", x);
} /* main */
% gcc -o x_gets_y_plus_1 x_gets_y_plus_1.c
% x_gets_y_plus_1
y = 5
x = 6

Assignment w/Expression Example

12CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

https://img-9gag-fun.9cache.com/photo/av59v7X_700bwp.webp

Here’s another assignment:
x = x + 1;

The assignment statement above might be
confusing, because it has the same
variable, x, on both the left hand side
and the right hand side of the
single equals sign.

IF THIS WERE AN EQUATION,
IT’D BE BAD.

But it’s NOT an equation, it’s an ACTION.
So the assignment above is GOOD.

Assignment w/Same Variable on Both Sides

https://img-9gag-fun.9cache.com/photo/av59v7X_700bwp.webp

13CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

x = x + 1;

This means:
 first, evaluate the expression that’s on the right hand side of the

assignment operator (equals sign);
 then, put the resulting value into the variable that’s on

the left hand side of the assignment operator (equals sign).
So, the assignment statement above means:
 “Get the current value of x, then add 1 to it, then put

the new value back into x, replacing the previous value.”

Same Variable on Both Sides: Meaning

14CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% cat assign_self.c
#include <stdio.h>

int main ()
{ /* main */
 int x;

 x = 5;
 printf("After 1st assignment, x = %d\n", x);
 x = x + 1;
 printf("After 2nd assignment, x = %d\n", x);
} /* main */
% gcc -o assign_self assign_self.c
% assign_self
After 1st assignment, x = 5
After 2nd assignment, x = 6

Same Variable on Both Sides: Example

15CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

In C, when we have an arithmetic expression
whose terms all evaluate to a single data type (for example,
all int-valued terms or all float-valued terms),
we refer to this as single mode arithmetic.

In C, single mode int arithmetic behaves like
single mode float arithmetic most of the time.

Single Mode Arithmetic

16CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

But, division is different for int versus float!

5.0 + 7.0 is 12.0 and
5 + 7 is 12

5.0 - 7.0 is -2.0 and
5 - 7 is -2

5.0 * 7.0 is 35.0 and
5 * 7 is 35

In C, single mode int arithmetic behaves like
single mode float arithmetic most of the time.

int vs float Arithmetic

17CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

We see that float division in C works the same way
that division works in mathematics.
But int division is a little bit strange.

In int division, the result is truncated to the nearest int
whose absolute value is immediately less than or equal to
the mathematical result.
Truncate: to cut off (for example, to cut off the digits
to the right of the decimal point)

5.0 / 7.0 is 0.71... BUT
5 / 7 is 0

Division is different for int versus float!

int vs float Division

18CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

4.0 / 4.0 is 1.0 and
4 / 4 is 1

5.0 / 4.0 is 1.25 BUT
5 / 4 is 1

6.0 / 4.0 is 1.5 BUT
6 / 4 is 1

7.0 / 4.0 is 1.75 BUT
7 / 4 is 1

8.0 / 4.0 is 2.0 and
8 / 4 is 2

int Division Truncates

19CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

Mathematically, division by zero gives an infinite result:
 c
 – = ∞ for c ≠ 0
 0
Or, more accurately, if you’ve taken Calculus:

“The limit of c / x as x approaches zero is arbitrarily large.”

Computationally, division by zero causes an error.

Division By Zero

20CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% cat divide_by_zero_constant.c
#include <stdio.h>
int main ()
{ /* main */
 printf("5 / 0 = %d\n", 5 / 0);
} /* main */
% gcc -o divide_by_zero_constant divide_by_zero_constant.c
divide_by_zero_constant.c: In function ‘main’:
divide_by_zero_constant.c:4: warning: division by zero

Division By Zero Example #1

21CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% cat divide_by_zero.c
#include <stdio.h>

int main ()
{ /* main */
 int numerator, denominator, quotient;

 printf("What's the numerator?\n");
 scanf("%d", &numerator);
 printf("What's the denominator?\n");
 scanf("%d", &denominator);
 printf("numerator = %d\n", numerator);
 printf("denominator = %d\n", denominator);
 quotient = numerator / denominator;
 printf("numerator / denominator = %d\n", quotient);
} /* main */
% gcc -o divide_by_zero divide_by_zero.c
% divide_by_zero
What's the numerator?
5
What's the denominator?
0
numerator = 5
denominator = 0
Floating exception

Division By Zero Example #2

22CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

% gcc -o divide_by_zero divide_by_zero.c
% divide_by_zero
What's the numerator?
5
What's the denominator?
0
numerator = 5
denominator = 0
Floating exception

Note that, in the context of computing, the word
exception means “a very dumb thing to do.”

As in, “I take exception to that.”

Floating Point Exception

23CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

In principle, we might like our numeric expressions to have
either all int-valued terms or all float-valued terms.

In practice, we can, and often must,
mix int-valued and float-valued terms
– literals, named constants, variables and subexpressions –
subject to the rule that an operation with
operands of both data types has a float result.

We call such expressions mixed mode arithmetic.

Mixed Mode Arithmetic #1

24CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

1 + 2 is 3 BUT
1.0 + 2 is 3.0 and
1 + 2.0 is 3.0

1 - 2 is -1 BUT
1.0 - 2 is -1.0 and
1 - 2.0 is -1.0

1 * 2 is 2 BUT
1.0 * 2 is 2.0 and
1 * 2.0 is 2.0

1 / 2 is 0 BUT
1.0 / 2 is 0.5 and
1 / 2.0 is 0.5

Mixed Mode Arithmetic #2

25CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

1 / 2 is 0 BUT

1 / 2.0 is
1.0 / 2.0 is 0.5

4.0 / (3 / 2) is 4.0 BUT

4.0 / (3.0 / 2) is
4.0 / (3.0 / 2.0) is 2.666…

For mixed mode arithmetic, we say that
an int operand is promoted to float.

Promoting an int to a float

26CS1313: Arithmetic Expressions Lesson #2
CS1313 Spring 2025

Given a weight/mass in pounds, convert to weight/mass in
metric tons.

Specifically, draw a flowchart and then write a C program
that:

1. greets the user;
2. prompts the user and then inputs an weight/mass in

pounds;
3. calculates the weight/mass in metric tons;
4. outputs the weight/mass in both pounds and metric tons.
The body of the program must not have any numeric literal

constants; all constants must be declared using
appropriate identifiers.

Don’t worry about comments.

Programming Exercise

	Arithmetic Expressions Lesson #2 Outline
	Named Constant & Variable Operands #1
	Named Constant & Variable Operands #2
	Named Constant & Variable Operands #3
	Constant-Valued Expressions #1
	Constant-Valued Expressions #2
	Constant-Valued Expressions #3
	Assignments W/O Expressions: Not Very Useful
	Assignments with Expressions: Crucial
	Meaning of Assignment w/Expression
	Assignment w/Expression Example
	Assignment w/Same Variable on Both Sides
	Same Variable on Both Sides: Meaning
	Same Variable on Both Sides: Example
	Single Mode Arithmetic
	int vs float Arithmetic
	int vs float Division
	int Division Truncates
	Division By Zero
	Division By Zero Example #1
	Division By Zero Example #2
	Floating Point Exception
	Mixed Mode Arithmetic #1
	Mixed Mode Arithmetic #2
	Promoting an int to a float
	Programming Exercise

