
Variables Outline
1. Variables Outline
2. Fortran 90 Character Set
3. Basic Data Types
4. Variables
5. Fortran 90 Variable Declaration
6. Variable Assignment
7. Variable Assignment Example
8. Changing a Variable’s Contents
9. Variable Initialization

10. Fortran 90 Variable Names
11. Implicitly Declared Variables Are BAD BAD BAD
12. WHY Are Implicitly Declared Variables BAD BAD BAD?
13. Why Is IMPLICIT NONE Good?
14. Literal Constants
15. Named Constants/Named Constant’s Value Can’t Be Changed
16. Why Literal Constants Are BAD BAD BAD
17. Why Named Constants Are Good
18. &: the Fortran 90 Continuation Character
19. Fortran 90 Continuation Character Example
20. List-Directed Output
21. Specifying the Value of a Variable Via

List-Directed Input from the Keyboard
22. Multiple Variables Per READ Statement
23. Program Variables vs. Algebra Variables
24. Programming Exercise

See Programming in Fortran 90/95, 1st or 2nd ed, Chapter 5 as well
as Chapter 6 sections 6.2 – 6.5.

1

Fortran 90 Character Set
These are the characters that Fortran 90 recognizes.

� Letters
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m
n o p q r s t u v w x y z

� Digits
0 1 2 3 4 5 6 7 8 9

� Special Characters
space (also known as blank)
’ " () * + - / : =
! & $; < > % ? , .

Fortran 90 is case insensitive: it doesn’t distinguish between upper
case and lower case letters, except inside character strings. So this
program:

PROGRAM hello_world
IMPLICIT NONE
PRINT *, "Hello, world!"

END PROGRAM hello_world

is treated the same as this program:
program hello_WORLD

iMpLiCiT NoNE
prinT *, "Hello, world!"

end proGRAM HELLO_world

Note: a character string literal is a sequence of characters delimited
either by a double quote at the beginning and at the end, or by a
single quote at the beginning and at the end; the two delimiters of a
string must both be the same quote character.

2

Basic Data Types

� Numeric
– INTEGER
– REAL

� Non-numeric
– LOGICAL
– CHARACTER

PROGRAM basictypes
IMPLICIT NONE
INTEGER :: count, number_of_silly_people
REAL :: standard_deviation, relative_humidity
LOGICAL :: count_is_less_than_5, I_am_Henry
CHARACTER (LEN = 20) :: username, hometown

END PROGRAM basictypes

3

Variables
A variable is an association between

� a name (chosen by the programmer), and

� a location in memory (chosen by the compiler).

Every variable has:

� a name, chosen by the programmer;

� an address (i.e., a location in memory), chosen by the compiler;

� a data type (e.g., INTEGER, REAL, LOGICAL, CHARACTER),
chosen by the programmer;

� a value (which may be undefined), sometimes chosen by the
programmer, and sometimes determined while the program is
running. The value is sometimes called the contents of the vari-
able — that is, the value is the contents of the variable’s memory
location.

The value of a variable can be changed at runtime. We’ll see how in
a moment.

Jargon: compile time and runtime.

� Events that occur while a program is being compiled are said to
happen at compile time.

� Events that occur while a program is running are said to happen
at runtime.

For example, the address of a variable is chosen at compile time,
while its value typically is determined at runtime.

4

Fortran 90 Variable Declaration

INTEGER :: x

This declaration tells the compiler to choose a location in memory,
name it x, and think of it as an integer. Note that this declaration
doesn’t specify a value.

The compiler might decide that x will live at, say, address 3980 or
address 98234092 or address 56436. We don’t know and don’t care
what address x lives at, because the compiler will take care of that
for us; it’s enough to know that x has an address and that the address
will stay the same throughout a given run of the program.

x : ???????? (Address 56436)

When x is first declared, we don’t know what its value is, because
we haven’t put anything into its memory location yet, so we say that
its value is undefined, or, informally, garbage.

Note: some compilers for some languages automatically initialize
newly declared variables to default values (e.g., all integers get ini-
tialized to zero), but not every compiler does automatic initialization.

You should NEVER NEVER NEVER assume that the compiler
will initialize your variables for you.

You should ALWAYS ALWAYS ALWAYS explicitly assign values
to your variables in the body of the program.

5

Variable Assignment
An assignment statement sets the contents of a specified variable to
a specified value:

x = 5

This statement tells the compiler to put the integer value 5 into the
memory location named x, like so:

x : 5 (Address 56436)

So, for example, we might have:

INTEGER :: x

�

x : ???????? (Address 56436)

x = 5

�

x : 5 (Address 56436)

x = 12

�

x : 12 (Address 56436)

We say “x is assigned twelve” or “x gets twelve.”

6

Variable Assignment Example
% cat assign.f90
!!!
!!! Program: assign !!!
!!! Author: Henry Neeman (hneeman@ou.edu) !!!
!!! Course: CS 1313 010 Spring 2003 !!!
!!! Lab: Sec 012 Fridays 1:30pm !!!
!!! Description: Declares, assigns and !!!
!!! outputs a variable. !!!
!!!
PROGRAM assign
!
! ***
! * Declaration section *
! ***
!
! * All variables must be explicitly declared.
!

IMPLICIT NONE
!
! *******************
! * Local variables *
! *******************
!
! * height_in_cm: my height in cm
!

INTEGER :: height_in_cm
!
! ***
! * Execution section *
! ***
!
! * Assign the integer value 160 to height_in_cm.
!

height_in_cm = 160
!
! * Print height_in_cm to standard output.
!

PRINT *, "My height is ", height_in_cm, " cm."
END PROGRAM assign
% f95 -o assign assign.f90
% assign
My height is 160 cm.

7

Changing a Variable’s Contents
% cat change.f90
!!!
!!! Program: change !!!
!!! Author: Henry Neeman (hneeman@ou.edu) !!!
!!! Course: CS 1313 010 Spring 2003 !!!
!!! Lab: Sec 012 Fridays 1:30pm !!!
!!! Description: Declares, assigns, changes !!!
!!! and outputs a variable. !!!
!!!
PROGRAM change
!
! ***
! * Declaration section *
! ***
!
! * All variables must be explicitly declared.
!

IMPLICIT NONE
!
! *******************
! * Local variables *
! *******************
!
! * height_in_cm: my height in cm
!

INTEGER :: height_in_cm
!
! ***
! * Execution section *
! ***
!
! * Assign the integer value 160 to height_in_cm.
!

height_in_cm = 160
!
! * Print height_in_cm to standard output.
!

PRINT *, "My height is ", height_in_cm, " cm."
!
! * Assign the integer value 200 to height_in_cm.
!

height_in_cm = 200
!
! * Print height_in_cm to standard output.
!

PRINT *, "My height is ", height_in_cm, " cm."
END PROGRAM change
% f95 -o change change.f90
% change
My height is 160 cm.
My height is 200 cm.

8

Variable Initialization
We can initialize a variable’s value in the variable declaration:

INTEGER :: x = 5
This statement is the same as declaring x and then assigning it 5.
% cat initialize.f90
!!!
!!! Program: initialize !!!
!!! Author: Henry Neeman (hneeman@ou.edu) !!!
!!! Course: CS 1313 010 Spring 2003 !!!
!!! Lab: Sec 012 Fridays 1:30pm !!!
!!! Description: Declares/initializes and !!!
!!! outputs a variable. !!!
!!!
PROGRAM initialize
!
! ***
! * Declaration section *
! ***
!
! * All variables must be explicitly declared.
!

IMPLICIT NONE
!
! *******************
! * Local variables *
! *******************
!
! * height_in_cm: my height in cm
!

INTEGER :: height_in_cm = 160
!
! ***
! * Execution section *
! ***
!
! * Print height_in_cm to standard output.
!

PRINT *, "My height is ", height_in_cm, " cm."
END PROGRAM initialize
% f95 -o initialize initialize.f90
% initialize
My height is 160 cm.

9

Fortran 90 Variable Names
Fortran 90 symbolic names (including variable names), which are
also called identifiers, have the following properties:

� Constructed using only these characters:

– Letters (case insensitive)
a b c d e f g h i j k l m
n o p q r s t u v w x y z

– Digits
0 1 2 3 4 5 6 7 8 9

– Underscore (NOTE: NOT hyphen)

� At most 31 characters long:
name567890123456789012345678901
is good, but not
name5678901234567890123456789012
(Note: not all F90 compilers strictly enforce this property.)

� The first character is a letter:
a123 456 is good, but not 1a23 456 nor a123 456

So, since there are 26 letters, 10 digits and 1 underscore, the number
of possible variable names is:�� �����

��	�
 � �
�
 � �� ��

Rule of Thumb for Choosing Variable Names

A variable name should be so obvious that your favorite professor
in your major, even if they know nothing about programming, could
immediately tell what the variable name means.

10

Implicitly Declared Variables Are
BAD BAD BAD

Most versions of Fortran, including Fortran 90, support implicitly
declared variables (also known as implicitly typed variables): if a
variable is not explicitly declared like so

INTEGER :: x

then it will be implicitly declared the first time that it appears in the
program, and its type will depend on the first letter of its variable
name:

� If the first letter of the variable name is one of
i j k l m n
then the variable will be implicitly declared as an INTEGER.

� Otherwise, the variable will be implicitly declared as a REAL.

However, Fortran 90 provides a statement

IMPLICIT NONE

that you can put at the beginning of your declaration section (i.e.,
right after the PROGRAM statement) that eliminates implicit variable
declaration.

If your program has an IMPLICIT NONE statement, then any
variables that are not explicitly declared in the declaration section
are assumed to be bugs.

If you fail to use the IMPLICIT NONE statement, you can have
all kinds of problems ...

11

WHY Are Implicitly Declared Variables
BAD BAD BAD?

Here’s a little program that does some calculating, then stops to
figure out whether the company has gone bankrupt.

% cat ruin.f90
PROGRAM ruin

INTEGER :: bankrupt = 3

bankrpt = bankrupt - 3
IF (bankrupt > 0) THEN

PRINT *, "Bankrupt!"
ELSE

PRINT *, "Whew!"
END IF

END PROGRAM ruin
% f95 -o ruin ruin.f90
% ruin
Bankrupt!

Uh oh. The company has gone bankrupt!

Notice that the program above doesn’t have an IMPLICIT NONE
statement, so the compiler assumes that bankrpt is a new variable
that we didn’t bother to declare, rather than a typo.

12

Why Is IMPLICIT NONE Good?
If we put an IMPLICIT NONE statement at the beginning of our
declaration section, then the compiler will catch the typo:

% cat dontruin.f90
PROGRAM ruin

IMPLICIT NONE !!! <--- LOOK! LOOK! LOOK!
INTEGER :: bankrupt = 3

bankrpt = bankrupt - 3
IF (bankrupt > 0) THEN

PRINT *, "Bankrupt!"
ELSE

PRINT *, "Whew!"
END IF

END PROGRAM ruin
% f95 -o dontruin dontruin.f90
Error: dontruin.f90, line 5: Implicit type

for BANKRPT detected at BANKRPT@=
[f95 terminated - errors found by pass 1]

So we ALWAYS ALWAYS ALWAYS use IMPLICIT NONE,
which turns off implicit variable declaration.

13

Literal Constants
A constant is a value that cannot change.

A literal constant is a constant whose value is specified literally:

� INTEGER literal constants
(e.g., 5, 0, -127, 403298, -385092809)

� REAL literal constants
(e.g., 5.2, 0.0, -127.5, 403298.2348,
-3.85092809E+08)

� LOGICAL literal constants
(e.g., .TRUE., .FALSE.)

� CHARACTER literal constants
(e.g., "A", ’Henry’, "What’s it to ya?")
Note: CHARACTER literal constants are sometimes called string
literal constants, or just string literals for short.

Example:
% cat tax1997_literal.f90
PROGRAM tax1997_literal

IMPLICIT NONE
REAL :: income, tax
PRINT *, "I’m going to calculate the ", &

& "federal income"
PRINT *, " tax on your 1997 income."
PRINT *, "What was your 1997 income in dollars?"
READ *, income
tax = (income - (4150.0 + 2650.0)) * 0.15
PRINT "(A,A,F9.2)", "The 1997 federal income ", &

& "tax on $", income
PRINT "(A,F8.2,A)", " was $", tax, "."

END PROGRAM tax1997_literal
% f95 -o tax1997_literal tax1997_literal.f90
% tax1997_literal
I’m going to calculate the federal income
tax on your 1997 income.

What was your 1997 income in dollars?
20000

The 1997 federal income tax on $ 20000.00
was $ 1980.00.

14

Named Constants
A named constant is exactly like a variable except that its value is set
at compile time and CANNOT change at runtime. In its declaration,
we indicate that it’s a constant via the PARAMETER attribute, and
we initialize it:

REAL,PARAMETER :: PI = 3.1415926
% cat circlecalc.f90
PROGRAM circle_calculation

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
REAL,PARAMETER :: diameter_factor = 2.0
REAL,PARAMETER :: area_power = 2.0
REAL :: radius, circumference, area
PRINT *, "I’m going to calculate a circle’s"
PRINT *, " circumference and area."
PRINT *, "What’s the radius of the circle?"
READ *, radius
circumference = pi * radius * diameter_factor
area = pi * radius ** area_power
PRINT *, "The circumference is ", circumference
PRINT *, " and the area is ", area, "."

END PROGRAM circle_calculation
% f95 -o circlecalc circlecalc.f90
% circlecalc
I’m going to calculate a circle’s
circumference and area.

What’s the radius of the circle?
5
The circumference is 31.4159241
and the area is 78.5398102 .

Named Constant’s Value Can’t Be Changed
% cat paramassign.f90
PROGRAM paramassign

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
pi = 3.0

END PROGRAM paramassign
% f95 -o paramassign paramassign.f90
Error: paramassign.f90, line 4: Inappropriate use

of symbol PI detected at PI@=
Error: paramassign.f90, line 4: Attempt to set the

value of PARAMETER PI detected at PI@=
[f95 terminated - errors found by pass 1]

15

Why Literal Constants Are BAD BAD BAD
When you embed literal constants in the body of your program, you
make it much harder to maintain and upgrade your program.

% cat tax1997_literal.f90
PROGRAM tax1997_literal

IMPLICIT NONE
REAL :: income, tax
PRINT *, "I’m going to calculate the ", &

& "federal income"
PRINT *, " tax on your 1997 income."
PRINT *, "What was your 1997 income in dollars?"
READ *, income
tax = (income - (4150.0 + 2650.0)) * 0.15
PRINT "(A,A,F9.2)", "The 1997 federal income ", &

& "tax on $", income
PRINT "(A,F8.2,A)", " was $", tax, "."

END PROGRAM tax1997_literal
% f95 -o tax1997_literal tax1997_literal.f90
% tax1997_literal
I’m going to calculate the federal income
tax on your 1997 income.

What was your 1997 income in dollars?
20000

The 1997 federal income tax on $ 20000.00
was $ 1980.00.

% cat tax1999_literal.f90
PROGRAM tax1999_literal

IMPLICIT NONE
REAL :: income, tax
PRINT *, "I’m going to calculate the ", &

& "federal income"
PRINT *, " tax on your 1999 income."
PRINT *, "What was your 1999 income in dollars?"
READ *, income
tax = (income - (4300.0 + 2750.0)) * 0.15
PRINT "(A,A,F9.2)", "The 1999 federal income ", &

& "tax on $", income
PRINT "(A,F8.2,A)", " was $", tax, "."

END PROGRAM tax1999_literal
% f95 -o tax1999_literal tax1999_literal.f90
% tax1999_literal
I’m going to calculate the federal income
tax on your 1999 income.

What was your 1999 income in dollars?
20000

The 1999 federal income tax on $ 20000.00
was $ 1942.50.

16

Why Named Constants Are Good
When you used named constants in the body of your program instead
of literal constants, you isolate the constant values in the declaration
section, making them trivial to find and to change.
% cat tax1997_named.f90
PROGRAM tax1997_named

IMPLICIT NONE
REAL,PARAMETER :: standard_deduction = 4150.0
REAL,PARAMETER :: single_exemption = 2650.0
REAL,PARAMETER :: tax_rate = 0.15
INTEGER,PARAMETER :: tax_year = 1997
REAL :: income, tax
PRINT *, "I’m going to calculate the federal income"
PRINT *, " tax on your ", tax_year, " income."
PRINT *, "What was your ", tax_year, &

& " income in dollars?"
READ *, income
tax = (income - &

& (standard_deduction + single_exemption)) * tax_rate
PRINT "(A,I4,A,F9.2,A,F8.2,A)", &

& "The ", tax_year, " federal income tax on $", income, &
& " was $", tax, "."

END PROGRAM tax1997_named
% f95 -o tax1997_named tax1997_named.f90
% tax1997_named
I’m going to calculate the federal income
tax on your 1997 income.

What was your 1997 income in dollars?
20000

The 1997 federal income tax on $ 20000.00 was $ 1980.00.

% cat tax1999_named.f90
PROGRAM tax1999_named

IMPLICIT NONE
REAL,PARAMETER :: standard_deduction = 4300.0
REAL,PARAMETER :: single_exemption = 2750.0
REAL,PARAMETER :: tax_rate = 0.15
INTEGER,PARAMETER :: tax_year = 1999
REAL :: income, tax
PRINT *, "I’m going to calculate the federal income"
PRINT *, " tax on your ", tax_year, " income."
PRINT *, "What was your ", tax_year, &

& " income in dollars?"
READ *, income
tax = (income - &

& (standard_deduction + single_exemption)) * tax_rate
PRINT "(A,I4,A,F9.2,A,F8.2,A)", &

& "The ", tax_year, " federal income tax on $", income, &
& " was $", tax, "."

END PROGRAM tax1999_named
% f95 -o tax1999_named tax1999_named.f90
% tax1999_named
I’m going to calculate the federal income
tax on your 1999 income.

What was your 1999 income in dollars?
20000

The 1999 federal income tax on $ 20000.00 was $ 1942.50.

17

&: the Fortran 90 Continuation Character
In Fortran 90, each statement is supposed to take only one line of
text, and only one statement can appear on each line of text.

As a general rule, in Fortran 90 we like our lines to run no longer
than 72 characters, both for historical reasons — previous versions
of Fortran (e.g., Fortran 77) required that lines be no longer than 72
characters — and to keep our programs more readable on standard
terminals and printers, which typically are 80 characters wide (we
like to leave a margin of error).

However, quite often it happens that we have a statement that is too
long to fit on a single line.

Fortran 90 provides a continuation character, & (called “ampersand”),
that allows statements to be longer than a single line.

18

Fortran 90 Continuation Character
Example

% cat tax1997_named.f90
PROGRAM tax1997_named

IMPLICIT NONE
REAL,PARAMETER :: standard_deduction = 4150.0
REAL,PARAMETER :: single_exemption = 2650.0
REAL,PARAMETER :: tax_rate = 0.15
INTEGER,PARAMETER :: tax_year = 1997
REAL :: income, tax
PRINT *, "I’m going to calculate the federal income"
PRINT *, " tax on your ", tax_year, " income."
PRINT *, "What was your ", tax_year, &

& " income in dollars?"
READ *, income
tax = (income - &

& (standard_deduction + single_exemption)) * tax_rate
PRINT "(A,I4,A,F9.2,A,F8.2,A)", &

& "The ", tax_year, " federal income tax on $", income, &
& " was $", tax, "."

END PROGRAM tax1997_named
% f95 -o tax1997_named tax1997_named.f90
% tax1997_named
I’m going to calculate the federal income
tax on your 1997 income.

What was your 1997 income in dollars?
20000

The 1997 federal income tax on $ 20000.00 was $ 1980.00.

Notice that a continuation is indicated by an ampersand at the end
of a line as well as at the beginning of the next line. It isn’t strictly
necessary to have the ampersands line up nicely, but it makes the
program more readable.

19

List-Directed Output
In Fortran 90, we can print out multiple pieces of information on a
single line of output text, using list-directed output:
% cat circlecalc.f90
PROGRAM circle_calculation

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
REAL,PARAMETER :: diameter_factor = 2.0
REAL,PARAMETER :: area_power = 2.0
REAL :: radius, circumference, area
PRINT *, "I’m going to calculate a circle’s"
PRINT *, " circumference and area."
PRINT *, "What’s the radius of the circle?"
READ *, radius
circumference = pi * radius * diameter_factor
area = pi * radius ** area_power
PRINT *, "The circumference is ", circumference
PRINT *, " and the area is ", area, "."

END PROGRAM circle_calculation
% f95 -o circlecalc circlecalc.f90
% circlecalc
I’m going to calculate a circle’s
circumference and area.

What’s the radius of the circle?
5
The circumference is 31.4159241
and the area is 78.5398102 .

Look at the last PRINT statement:

PRINT *, " and the area is ", area, "."

This PRINT statement outputs

� the string literal " and the area is ", followed by

� the value of the REAL variable named area, followed by

� the string literal "."

These items appear in sequence on the same line of output text.

On the other hand, look at the last two PRINT statements. Notice
that they print their outputs onto two consecutive lines of output text,
in the same sequence as they occur in the program.

20

Specifying the Value of a Variable Via
List-Directed Input from the Keyboard

% cat read_variable.f90
!!!
!!! Program: read_variable !!!
!!! Author: Henry Neeman (hneeman@ou.edu) !!!
!!! Course: CS 1313 010 Spring 2003 !!!
!!! Lab: Sec 012 Fridays 1:30pm !!!
!!! Description: Declares, inputs and then !!!
!!! outputs a variable. !!!
!!!
PROGRAM read_variable
!
! ***
! * Declaration section *
! ***
!
! * All variables must be explicitly declared.
!

IMPLICIT NONE
!
! *******************
! * Local variables *
! *******************
!
! * height_in_cm: my height in cm
!

INTEGER :: height_in_cm
!
! ***
! * Execution section *
! ***
!
! * Prompt the user to input the value of
! * height_in_cm.
!

PRINT *, "What’s my height in centimeters?"
!
! * Input height_in_cm from standard input (i.e.,
! * the keyboard).
!

READ *, height_in_cm
!
! * Print height_in_cm to standard output.
!

PRINT *, "My height is ", height_in_cm, " cm."
END PROGRAM read_variable
% f95 -o read_variable read_variable.f90
% read_variable
What’s my height in centimeters?
160
My height is 160 cm.

21

Multiple Variables Per READ Statement
Fortran 90 supports inputting multiple variables per READ statement.
The individual input values can be separated

� by commas,

� by blank spaces, and/or

� by carriage returns.
% cat readlist.f90
PROGRAM readlist

IMPLICIT NONE
INTEGER :: number_of_silly_people, number_of_toys
REAL :: average_height_in_m
LOGICAL :: toys_put_away
CHARACTER (LEN = 20) :: username, hometown

PRINT *, "How many silly people are there in CS1313,"
PRINT *, " and what’s their average height in meters?"
READ *, number_of_silly_people, average_height_in_m
PRINT *, "There are ", number_of_silly_people, &

& " silly people"
PRINT *, " with an average height of ", &

& average_height_in_m, " m."
PRINT *, "How many toys do I have, and is it true"
PRINT *, " that I put them away?"
READ *, number_of_toys, toys_put_away
PRINT *, "I have ", number_of_toys, " toys."
PRINT *, "My toys are put away? : ", toys_put_away
IF (toys_put_away) THEN

PRINT *, " Yes, I did put my toys away."
ELSE

PRINT *, " No, I didn’t put my toys away."
END IF
PRINT *, "What’s my username and hometown?"
READ *, username, hometown
PRINT *, "My username is ", username
PRINT *, "and my hometown is ", hometown, "."

END PROGRAM readlist
% f95 -o readlist readlist.f90
% readlist
How many silly people are there in CS1313,
and what’s their average height in meters?

7, 1.75
There are 7 silly people
with an average height of 1.7500000 m.

How many toys do I have, and is it true
that I put them away?

43 T
I have 43 toys.
My toys are put away? : T
Yes, I did put my toys away.

What’s my username and hometown?
neeman

Buffalo
My username is neeman
and my hometown is Buffalo .

22

Program Variables vs. Algebra Variables
Variables in Fortran 90 (and many other programming languages)
look and feel very similar to variables that you deal with in your
math classes, from high school algebra on up.

This is on purpose.

The main difference between an algebra variable and a program vari-
able is that a program variable can change its value during a run:

Algebra

Let x be 5.

�

� � x = 5

Let y be 7.

�

� � y = 7

z = x + y

�

� � z = 12

Fortran 90 Output

x = 5
PRINT *, x 5

y = 7
PRINT *, y 7

z = x + y
PRINT *, z 12

z = x * y
PRINT *, z 35

23

Programming Exercise
Create a program that:

1. prompts the user for their weight in pounds;

2. inputs the user’s weight in pounds;

3. outputs the user’s weight in pounds.

Begin by drawing a flowchart, and then write the program. The pro-
gram MUST have an IMPLICIT NONE statement, but does not
have to have comments. The data type for the weight variable must
be appropriate.

24

