Variables Outline

. Variables Outline

. Fortran 90 Character Set

. Basic Data Types

. Variables

. Fortran 90 Variable Declaration

. Variable Assignment

. Variable Assignment Example

. Changing a Variable’s Contents

. Variable Initialization

. Fortran 90 Variable Names

. Implicitly Declared Variables Are BAD BAD BAD

. WHY Are Implicitly Declared Variables BAD BAD BAD?

.Why s | MPLI CI T NONE Good?

. Literal Constants

. Named Constants/Named Constant’s Value Can’t Be Changed

. Why Literal Constants Are BAD BAD BAD

. Why Named Constants Are Good

. &: the Fortran 90 Continuation Character

. Fortran 90 Continuation Character Example

. List-Directed Output

. Specifying the Value of a Variable Via
List-Directed Input from the Keyboard

22. Multiple Variables Per READ Statement

23. Program Variables vs. Algebra Variables

24. Programming Exercise

© 00 NO Ol WN -

NNRPRPRRPRRRRERERRREE
P O OWooo~NOoO ol WNEFEO

See Programming in Fortran 90/95, 1st or 2nd ed, Chapter 5 as well
as Chapter 6 sections 6.2 — 6.5.

Fortran 90 Character Set

These are the characters that Fortran 90 recognizes.

e Letters
A B CDUEF GHI J KL M
NOP QR ST UV WX Y Z
a b c d e f g h i j k I m
n o p g r s t uv wXx vy z
¢ Digits

0 1. 2 3 45 6 7 8 9

e Special Characters
space (also known as blank)
S (D I N = _
! & $;. < > % ? ,

Fortran 90 is case insensitive: it doesn’t distinguish between upper
case and lower case letters, except inside character strings. So this
program:

is treated the same as this program:

program hel I 0 WRLD

va NoNE
pri * Hel l o, world!"

end pr OGRAM HELLO wor | d
Note: a character string literal is a sequence of characters delimited
either by a double quote at the beginning and at the end, or by a
single quote at the beginning and at the end; the two delimiters of a
string must both be the same quote character.

2

Basic Data Types

e Numeric
— | NTEGER
— REAL
e Non-numeric
- LOd CAL
— CHARACTER

PROGRAM basi ct ypes
I MPLI CI' T NONE

I NTEGER :: count, nunber_of_silly_people
REAL ;. standard_deviation, relative_humdity
LOG CAL :: count_is_less_than_5, |I_amHenry

CHARACTER (LEN = 20)
END PROGRAM basi ct ypes

user name, honet own

Variables

A variable is an association between
e a name (chosen by the programmer), and
e a location in memory (chosen by the compiler).

Every variable has:

e a name, chosen by the programmer;

e an address (i.e., a location in memory), chosen by the compiler;

e a data type (e.g., | NTEGER, REAL, LOG CAL, CHARACTER),
chosen by the programmer;

e a value (which may be undefined), sometimes chosen by the
programmer, and sometimes determined while the program is
running. The value is sometimes called the contents of the vari-
able — that is, the value is the contents of the variable’s memory
location.

The value of a variable can be changed at runtime. We’ll see how in
a moment.

Jargon: compile time and runtime.

e Events that occur while a program is being compiled are said to
happen at compile time.

e Events that occur while a program is running are said to happen
at runtime.

For example, the address of a variable is chosen at compile time,
while its value typically is determined at runtime.

4

Fortran 90 Variable Declar ation
I NTEGER :: X

This declaration tells the compiler to choose a location in memory,
name it X, and think of it as an integer. Note that this declaration
doesn’t specify a value.

The compiler might decide that x will live at, say, address 3980 or
address 98234092 or address 56436. We don’t know and don’t care
what address x lives at, because the compiler will take care of that
for us; it’s enough to know that x has an address and that the address
will stay the same throughout a given run of the program.

When x is first declared, we don’t know what its value is, because
we haven’t put anything into its memory location yet, so we say that
its value is undefined, or, informally, garbage.

Note: some compilers for some languages automatically initialize
newly declared variables to default values (e.g., all integers get ini-
tialized to zero), but not every compiler does automatic initialization.

You should NEVER NEVER NEVER assume that the compiler
will initialize your variables for you.

You should ALWAYS ALWAY'S ALWAYS explicitly assign values
to your variables in the body of the program.

5

Variable Assignment

An assignment statement sets the contents of a specified variable to
a specified value:

X =5

This statement tells the compiler to put the integer value 5 into the
memory location named x, like so:

X (Address 56436)

So, for example, we might have:

INTEGER :: X
4

X =5
4

X (Address 56436)

X = 12

X (Address 56436)

We say “x is assigned twelve” or “x gets twelve.”

Variable Assignment Example

% cat assign.f90

rrnd

! Program assign 1
! Aut hor: Henry Neeman (hneeman@u. edu) [
I Cour se: CS 1313 010 Spring 2003 [N
I Lab: Sec 012 Fridays 1:30pm g
! Description: Declares, assigns and 1
| |
!

! outputs a variabl e. '
rrrnnd

PROCGRAM assi gn

R R R R R

* Declaration section *

R R R

* Al variables nust be explicitly declared.

I MPLICI' T NONE

khkkkkhkkhkhkhkhkkhkkkkkkk*

* Local variables *

Kkkkkhkohkhkkkkkkkokkokkhk

* height_in_cm ny height incm
I NTEGER :: height_in_cm

R R

. . .
Execution section *
kohkkkkkkkhhhkkkkkkkkkkhkhkkkkkkhkkkkkkkk k% & & & & & K &

* Assign the integer value 160 to height_in_cm
hei ght _in_cm = 160
* Print height_in_cmto standard output.

PRINT *, "My height is ", height_in_cm " cm"

END PROGRAM assi gn
% f95 -0 assign assign.f90
% assi gn

My height is 160 cm

Changi ng a Variable's Contents
R ERROR Y

Program change

1

111 Aut hor: Henry Neeman (hneeman@u edu)

11l Course: CS 1313 010 Spri ng

11l Lab: Sec 012 Fridays 1730pm

11l Descri pt | on Decl ar es, "~ assi gns, changes
[and P a vari abl e

||III||I|IIII II|I IIll||III|IIII||IIII|III||II

Ak KKk hkhkhhkh kA kA Ak kkkhk kA Ak AR Ak kkkkhhhkh kA kA Ak Xk k& % % %

* Decl aration section *

|
|
!
| hkkkkhhhhkhkkkkk ko hhk kA Ak ok ok ok ok hhhhkkkkkkkkkkkk ok kokkk*x
|
|
|

* Al variables nust be explicitly declared.
I MPLI CI' T NONE

kkkkkkkhhhkhkhkhkhkkkk k%

* Local variables *

Khkhkkkkkhkhhhhkkhkkkkkk

* height_in_cm ny height in cm
I NTEGER :: height_in_cm

Ak KKk hkhhhkh kA Ak Ak khkhkh kA A AR Ak kkkkkhhh kA kA Ak Xk k k% % %

* Execution section *

I R R R R R R

* Assign the integer value 160 to height_in_cm
hei ght _in_cm = 160
I * Print height_in_cmto standard output.
PRINT *, "My height is ", height_in_cm " cm"
I * Assign the integer value 200 to height_in_cm
hei ght _in_cm = 200
I * Print height_in_cmto standard output.

* o height is ", height_in_cm " cm"
END PROGRAMC 'Wg 9 gnt -t h-

% f95 -0 change change. f90

% change

height is 160 cm
height is 200 cm

Variable I nitialization

We can initialize a variable’s value in the variable declaration:
)) INTEGER :: x =5 o
This statement is the same as declaring x and then assigning it 5.

%cat initialize.f90

RN RN RN RN R RN RN RN RN RN R RN RN RN R RN RN AR AR

'l Program initialize (N
! Aut hor: Henry Neenman (hneenman@u. edu) 1

111 Course: CS 1313 010 Spring 2003 Ny
1l Lab: Sec 012 Fridays 1:30pm (N
! Description: Declares/initializes and [
! outputs a variabl e. 1
| T T A O O |

Kkkhkhkkhhhh kA kkkkhhhh kA Ak kkkhkhhhhkh kA Ak kkkkk Kk k Kk k%

* Decl aration section *

|
|
|
1 R R S I
|
|
|

* Al variables nust be explicitly declared.

IMPLICI T NONE

Kkkkhhkhkhkhkhkhkhkkkkkhkhkhx

* Local variables *
EEEE RS EEEEEEEEEEEEES

* height_in_cm ny height in cm

I NTEGER :: height_in_cm= 160
R EEEE RS EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESESE

|
1

I * Execution section *
1 LR R R R R EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEES]
|
|
|

* Print height_in_cmto standard out put.

PRINT *, "My height is ", height_in_cm " cm"
END PROGRAM i niti ali ze
%f95 -0 initialize initialize.f90
%initialize
M/ height is 160 cm

Fortran 90 Variable Names

Fortran 90 symbolic names (including variable names), which are
also called identifiers, have the following properties:

e Constructed using only these characters:
— Letters (case insensitive)
a b c d e f g h i j k I m
n o p g r s t uv wXx vy z
— Digits
0 1 2 3 45 6 7 8 9
— Underscore (NOTE: NOT hyphen)

e At most 31 characters long:
nane567890123456789012345678901
is good, but not
nane5678901234567890123456789012
(Note: not all F90 compilers strictly enforce this property.)

e The first character is a letter:
al23.456 isgood, butnot 1a23 456 nor _al23.456

So, since there are 26 letters, 10 digits and 1 underscore, the number
of possible variable names is:
30 .
> 26-37 ~ 3 x 108
i=0
Rule of Thumb for Choosing Variable Names

A variable name should be so obvious that your favorite professor
in your major, even if they know nothing about programming, could
immediately tell what the variable name means.

10

Implicitly Declared Variables Are
BAD BAD BAD

Most versions of Fortran, including Fortran 90, support implicitly
declared variables (also known as implicitly typed variables): if a
variable is not explicitly declared like so

I NTEGER :: X

then it will be implicitly declared the first time that it appears in the
program, and its type will depend on the first letter of its variable
name:

o If the first letter of the variable name is one of
i j k I mn
then the variable will be implicitly declared as an | NTEGER.
e Otherwise, the variable will be implicitly declared as a REAL.
However, Fortran 90 provides a statement
I MPLI CI' T NONE

that you can put at the beginning of your declaration section (i.e.,
right after the PROGRAM statement) that eliminates implicit variable
declaration.

If your program has an |1 MPLI CI T NONE statement, then any
variables that are not explicitly declared in the declaration section
are assumed to be bugs.

If you fail to use the | MPLI CI T NONE statement, you can have
all kinds of problems ...

11

WHY Arelmplicitly Declared Variables
BAD BAD BAD?

Here’s a little program that does some calculating, then stops to
figure out whether the company has gone bankrupt.

% cat ruin.f90
PROGRAM r ui n
I NTEGER :: bankrupt = 3

bankrpt = bankrupt - 3
I F (bankrupt > 0) THEN
PRI NT *, "Bankrupt!"
ELSE
PRI NT *, "Whew "
END | F
END PROGRAM rui n
%f95 -0 ruin ruin.f90
% ruin
Bankr upt !

Uh oh. The company has gone bankrupt!

Notice that the program above doesn’t have an | MPLI CI T NONE
statement, so the compiler assumes that bankr pt isa new variable
that we didn’t bother to declare, rather than a typo.

12

Why Is | MPLI CI T NONE Good?

If we putan | MPLI CI' T NONE statement at the beginning of our
declaration section, then the compiler will catch the typo:

% cat dontruin.f90

PROGRAM rui n
IMPLICIT NONE !l <--- LOOK! LOOK! LOXK!
| NTEGER :: bankrupt = 3

bankrpt = bankrupt - 3
| F (bankrupt > 0) THEN
PRINT *, "Bankrupt!"
ELSE
PRI NT *, "Whew "
END | F
END PROGRAM rui n
% f95 -0 dontruin dontruin.f90
Error: dontruin.f90, line 5: Inplicit type
for BANKRPT det ect ed at BANKRPT@*
[f95 terminated - errors found by pass 1]

So we ALWAYS ALWAYS ALWAYS use | MPLI CI' T NONE,
which turns off implicit variable declaration.

13

Literal Constants

A constant is a value that cannot change.

A literal constant is a constant whose value is specified literally:

e | NTEGER literal constants
(e.g., 5, 0, -127, 403298, -385092809)
e REAL literal constants
(e.g, 5.2, 0.0, -127.5, 403298. 2348,
- 3. 85092809E+08)
e LOG CAL literal constants
(e.g., . TRUE., .FALSE.)
e CHARACTER literal constants
(e.g., "A", "Henry', "What's it to ya?")
Note: CHARACTER literal constants are sometimes called string
literal constants, or just string literals for short.

Example:

% cat tax1997 literal.f90
PROGRAM t ax1997 literal
I MPLI CI T. NONE
REAL :: incone, tax
PRINT *, "I"mgoing to calculate the ", &
& "federal inconge" .
PRINT *, " tax on your 1997 incone."
PRINT *, "What was your 1997 incone in dollars?"

READ *, i ncomne
4150.0 + 2650.0)) * 0,15

tax = (income - .
PRINT "(A A F9.2 "The 1997 federal inconme ", &
ax on . ncome

& it
PRINT "(A F8.2 A?‘_', " was $", tax,
END PROGRAM t ax1997 [iteral)
% f95 -0 tax1997 literal tax1997_literal.f90
% tax1997_literal .
I"mgoing to calculate the federal income
taX on your 1997 incone.
Wiat was your 1997 incone in dollars?

20000)
The 1997 federal incone tax on $ 20000. 00
was $ 1980. 00.

14

Named Constants

A named constant is exactly like a variable except that its value is set
at compile time and CANNOT change at runtime. In its declaration,
we indicate that it’s a constant via the PARAMETER attribute, and
we initialize it:

REAL, PARAMETER :: Pl = 3.1415926

% cat circlecalc.f90
PROGRAM circl e cal cul ation
I MPLI CI T NONE

REAL, PARAMETER :: pi 3. 1415926

REAL. PARAVETER : : di aneter factor = 2.0
REAL. PARAI\/ET—R . area_power = 2.0

RI :: radius, circunference, area

PRI NT *, "I’mgmn to calculateamrcles
PRINT *, " ci rcunference and area.

PRINT *, "Wat’'s the radius of the circle?"
READ *, radi us
cucun”ference = pi * radius * dianmeter_factor
= p| * radius ** area_power

PRINT * "The circunference is ", circunference
PRINT *, " and the area is ", area, "."

END PROGRAM circle cal cul ation

%f95 -0 circlecalT circlecalc.f90

% circlecalc .

I"’mgoing to calculate a circle’s
circunference and area. .

What's the radius of the circle?

5
The circunference is 31. 4159241
and the area is 78.5398102 .

Named Constant’s Value Can’t Be Changed

% cat ’:\)Aar amassi gn. f 90
ROGRA Far anmssi gn
| MPL

REAL, PARAI\/ETER pi = 3.1415926
END E’ROG?AM par anessi gn

% f95 -0 paramassi gn Barama55| gn. f90
Error: paramassi gn f9 line 4: IPlnaéproprl ate use

of synbol "PI det ected at
Error: paranasagn ine 4: Attenpt to set the
val ue of TE R Pl detected at Pl @

[f95 term nated - errors found by pass 1]

15

Why Literal Constants Are BAD BAD BAD

When you embed literal constants in the body of your program, you
make it much harder to maintain and upgrade your program.

% cat tax1997 literal.f90
PROGRAM t ax1997 literal

I MPLI CI T. NONE

REA

L :: |ncorre tax
PRINT *, "I"mgoing to calculate the ", &
& "federal incone"
PRINT *, " tax on your 1997 jncone."

PRI NT *. "\WWat was your 1997 incore in dollars?"

READ *, i ncone

t ax (income - (4150 + 2650 0)) * 0.15

PRINT (A A F9.2 ", "Th 997 federal inconme ", &
& ' on $ income,

PRl . " was $", t ax,
thax199'7 ?lteral

END

%f95 -0_tax1997 liferal tax1997_literal.f90

% tax1997_literal

I"mgoing to calc
tax on your 199

V\hat was your 199

The 1997 feder aI incone tax on $ 20000. 00
was $ 19

ncone.

late the federal incone
i
incone in dollars?

u
7
7

% cat tax1999 literal.f90
PROGRAM t

1999 [iteral
INPLI C NONE
REAL :: incone, tax
PRI NT *, "I’mgmng to calculatethe &
& 'federal incone"
PRINT *, " tax on your 1999 incore.

PRI NT *: "What was your 1999 incone in dollars?"
READ *, i ncone

tax = (incone - (4 3000+2750.0)) * 0,15

PRINT "(A A F9.2)", "The 1999 federal income ", &
& “tax on $", incone,

PRINT "(A F8.2, A " was $", tax, "
END PROGRAM t ax1999 | i iaral

tax1999 literal.f90
% tax1999 I|iteral
I"mgoing to calcul
tax on your 199
Wiat was your 199

2000
The 1999 feder aI i
was $ 1942.

te the federal incone
i ncone.
ncone in dollars?

cone tax on $ 20000. 00

it
% f95 -0 tax1999 liTera

ate

i

i

u
9
9
n

16

Why Named Constants Are Good

When you used named constants in the body of your program instead
of literal constants, you isolate the constant values in the declaration

section, making them trivial to find and to change.
fé’ cat tax1997 naned. f90

tax1997 naned

ILMPLI Gl T NONE
REAL, PARAMETER :: standard_deduction = 4150.0
REAL, PARAVETER 11 single_eXenption = 2650.0
REAL, PARAVETER oootax = 0.15
| NTEGER, PARAMETER :: tax_year = 1997
REAL :: |ncoma tax
PRI NT *, “mgoing to calculate the federal i ncone”
PRINT *, " ‘tax on your ", tax_year, " incone.
PRINT *, "Wat was your ", tax_year

& " income in dollars?

READ *, incone
tax = (income -

st andard deduct|on + single_exenption)) * tax_rate
PRINT "(A 14,A F9.2,A F8.2, A" &
& The ", tax year federal income tax on $", income, &

s $", tax
PROGRAM 21957 Aamed’

%f95 -0 tax1997 nanmed tax1997 naned. f 90
%ta><1997 naned

mgoing to calculate the federal incone

tax on your 1997 incone.
V\g%owas your 1997 incone in dollars?
The 1997 federal income tax on $ 20000.00 was $ 1980. 00.

&

% cat tax1999 naned. f 90
PROGRAM

tax1999 named

LI C T NONE
REAL, PARAMETER :: standard_deduction = 4300.0
REAL, PARA ER 1 single_exenption = 2750.0
REAL, PARAVETER 1o tax_rafe = 0.15
| NTEGER, PARAMETER :: tax_year = 1999
REAL :: |ncome tax
PRI NT *, * mgomgto calculate the federal income"
PRINT *, " tax on your ", tax_year, i ncone.
PRINT *, "What was_your ", tax “year, &

& " income in dollars?

READ * i ncone
tax = (| ncone &

standard deduction + single_exenption)) * tax_rate
PRINT "(A, 14,A F9.2,AF8 2 A" &
& The , tax year . federal inconme tax on $", income, &

& s $"
END PROGRAM § 2x 1009 aafred’
%f95 -0 tax1999_ named ta><1999 naned. f 90
%ta><1999 named
mgoing to calculate the federal income
tax on your 1999 incone.
\zlggt O\Mas your 1999 incone in dollars?
The 1999 federal income tax on $ 20000.00 was $ 1942.50.

&

17

& : the Fortran 90 Continuation Char acter

In Fortran 90, each statement is supposed to take only one line of
text, and only one statement can appear on each line of text.

As a general rule, in Fortran 90 we like our lines to run no longer
than 72 characters, both for historical reasons — previous versions
of Fortran (e.g., Fortran 77) required that lines be no longer than 72
characters — and to keep our programs more readable on standard
terminals and printers, which typically are 80 characters wide (we
like to leave a margin of error).

However, quite often it happens that we have a statement that is too
long to fit on a single line.

Fortran 90 provides a continuation character, & (called “ampersand”),
that allows statements to be longer than a single line.

18

Fortran 90 Continuation Character

Example

% cat tax1997_naned. f 90
PROGRAM t ax1997_naned

I MPLI CI T NONE

REAL, PARAVETER :: standard_deduction = 4150.0

REAL, PARAMETER :: single_exenption = 2650.0

REAL, PARAVETER © tax_rate = 0.15

| NTEGER, PARAMETER : @ tax _year = 1997

REAL :: |ncoma tax

PRINT *, "l1"mgoing to calculate the federal |ncone"

PRINT *, " tax on your ", tax_year, " incone.

PRINT *, "What was your ", tax_year, &
& " income in dollars?"

READ *, inconme

tax = (income - &
& (standard_deduction + single_exenption)) * tax_rate

PRINT ' "(A 14,A F9.2,A F8.2,A)" &
& “The ", tax _year, " federal income tax on $", incone, &
& " was $", tax, "

END PRCGRAMtaX1997 narred
%f95 -0 tax1997_naned tax1997_named. f 90
% t ax1997_naned
I"mgoing to cal culate the federal income
tax on your 1997 incone.
What was your 1997 incone in dollars?
20000
The 1997 federal income tax on $ 20000.00 was $ 1980. 00.

Notice that a continuation is indicated by an ampersand at the end
of a line as well as at the beginning of the next line. It isn’t strictly
necessary to have the ampersands line up nicely, but it makes the
program more readable.

19

List-Directed Output

In Fortran 90, we can print out multiple pieces of information on a
single line of output text, using list-directed output:

% cat circlecalc.f90

PROGRAM ci rcl e cal cul ation
| MPLI CI' T NONE
REAL, PARAMETER :: pi = 3.1415926
REAL, PARAMETER : : di an'et er_factor = 2.0
REAL PARAMETER :: area_power = 2.0

;. radius, circunference, area

PRINT* "I 'm goi ng to calculateaurcles
PRINT *, " circunference and_ area.
PRINT *! "Wat's the radius of the circle?"
READ *. ' radi us . . .
ci rcu erence = pi * radius * dianeter_factor

area = pl * radius ** area_power)
PRI l\rr * "The circunference is ", circunference
PRINT *, " and the area is ", area, "."

END PROGRAM circle_cal culation

%f95 -0 circlecalT circlecalc.f90

%circl ecalc

I"mgoing to calculate a circle's
circunference and area.

\é\hat’s the radius of the circle?

The circunference is 31.4159241
and the area is 78.5398102 .

Look at the last PRI NT statement:
PRINT *, " and the area is ", area, "."
This PRI NT statement outputs
e the string literal " and the area is ", followed by
e the value of the REAL variable named ar ea, followed by
e the string literal "
These items appear in sequence on the same line of output text.

On the other hand, look at the last two PRI NT statements. Notice
that they print their outputs onto two consecutive lines of output text,
in the same sequence as they occur in the program.

20

Specifying the Value of a Variable Via
ool List-Directed | nput from the Keyboard

Description: Declares, inputs and then

! outputs a variabl e.
RERERRRR RN RN R R R R AR R R RN RN RN R R RN RN R R R RN

PROCGRAM r ead_vari abl e
V _
1 R R

! : Decl aration section *

I R R R R R R R R R

INNRERY !!!T.'I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!' Program read var|able N
111 Aut hor:)éNeeman hneenan?)u edu) [y
111 Course: 13 010 Spring 2003 [y
:: Lab: Sec 012 Fridays 1:30pm H:
i 1l
i i

* Al variables nmust be explicitly declared.
I MPLI CI' T NONE

| *kkkhkkkhkhkhhkhkhkkkkkkhk

I * |ocal variables *
EEE R R R R EEEEEEEEEEEES

* height_in_cm ny height in cm
I NTEGER :: height_in_cm
! EE R R R R

I * Execution section *
RS E S SRR S EEE SRR S EREEEEEEREEREEEEEEEEEEEEEEEEEEESRESESS

* Pronﬁt the user to input the value of
* height_in_cm

PRINT *, "What's ny height in centinmeters?"

*

|
! I nput height_in_cmfromstandard input (i.e.,
= * the keyboard).

\ READ *, height_in_cm

: * Print height_in_cmto standard output.

' * height is ", height_incm " cm"
END PROGRAM reg/yd var pabl e 9 m

% f95 -0 read_vari abl e read_vari abl e. f 90

% read_vari abl'e

What’s nmy height in centineters?

M/ height is 160 cm

21

Multiple Variables Per READ Statement

Fortran 90 supports inputting multiple variables per READ statement.

The individual input values can be separated
e by commas,
e by blank spaces, and/or
e by carriage returns.

% cat readlist. f90
P M readl | s
IMPLICI T NCNE
nunber _of _silly_peopl e, nunber_of _toys
aver age. he| ght in_m
CAL S put‘ way
CHARACTER (LE 20y :: username, homet own

PRINT *, "How mav\% silly people are there in CS1313,"
a

PRINT * " and t’s their average hei ht |n met ers?"
READ *, nunber of _silly_people, average_| in_m
PRINT *, "There are ", nunber of _silly_] peop e &
& " silly people"
PRINT *, " with an average height of ", &
& aver age_hei ght _in_m .
PRI NT *, "Howman toys do | have, and is it true"
PRI NT *, " put them a\/\e\{"
READ * un‘oer of toys, toys_pu \%
PRINT *, "I have ~of_toys, toys."
I NT * w ys_are put away? ", toyS_put_away
IF(toYs pu avxav Fd'd
, " es, i ut toys away."
ELSE (put ny toy y
END FE'NT * " No, | didn't put ny toys away."
PRI NT *, "Wat’s usernarme and honet own?"
READ * ~usernanme, hometown
PRI NT *, "Ny usernane is ", usernanme
PRINT *' and ny hometown is ", honetown, "."
PROGRAM r ead| i st
f95 [} readl I'st readlist.f90
% readI|

t's their average height in neters?

There are 7 silly people

with an average hei ght of 1.7500000 m
How nany toys do | have and is it true

t hat put them away?

hav 43 Y

toys are pu away? @ T

Ye | did put ny toys away.
t’s ny username” and” honet own?
Bi

u

silly people are there in CS1313,
. and \Mv1a

neeman
uf f al o
sernane i s neeman
nd ny honmetown is Buffalo

|
W
Wha
e
W
an

22

Program Variablesvs. Algebra Variables

Variables in Fortran 90 (and many other programming languages)
look and feel very similar to variables that you deal with in your
math classes, from high school algebra on up.

This is on purpose.

The main difference between an algebra variable and a program vari-
able is that a program variable can change its value during a run:

Algebra Fortran 90 Output

Let x be 5. X =5

L Xx=5 PRI NT *, X 5

Lety be 7. y =7

Ly=7 PRI NT *, vy 7

z=X+y zZ =X +y

Lz=12 PRI NT *, z 12
zZ =X *y

PRINT *, z 35

23

Programming Exercise
Create a program that:

1. prompts the user for their weight in pounds;

2. inputs the user’s weight in pounds;

3. outputs the user’s weight in pounds.
Begin by drawing a flowchart, and then write the program. The pro-
gram MUST have an | MPLI CI T NONE statement, but does not

have to have comments. The data type for the weight variable must
be appropriate.

24

