
Intrinsic Functions Outline
1. Intrinsic Functions Outline
2. Functions in Mathematics
3. Functions in Fortran 90
4. A Quick Look atABS
5. Intrinsic Functions in Fortran 90
6. Math: Domain & Range
7. Programming: Argument Type
8. Programming: Return Type
9. More on Function Arguments

10. Function Argument Example
11. Using Functions
12. Function Use Example
13. Evaluation of Functions in Expressions
14. Functions with Multiple Arguments

SeeProgramming in Fortran 90/95, 1st or 2nd edition, Chapter 10
section 10.4, and especially Chapter 17.

1

Functions in Mathematics
“In mathematics afunction is a rule that assigns to each element
of a set an element of the same or of another set.” (Bers & Karal,
Calculus, 2nd ed, Holt, Reinhart & Winston, 1976, p. 50.)

So, for example, if we have a function
f (x) = x + 1

then we know that
. . .

f(−2.5) = −2.5 + 1 = −1.5
f(−2) = −2 + 1 = −1
f(−1) = −1 + 1 = 0
f(0) = 0 + 1 = +1
f(+1) = +1 + 1 = +2
f(+2) = +2 + 1 = +3
f(+2.5) = +2.5 + 1 = +3.5

. . .

Likewise, if we have a function
a(y) = | y |

then we know that
. . .

a(−2.5) = | −2.5 | = 2.5
a(−2) = | −2 | = 2
a(−1) = | −1 | = 1
a(0) = | 0 | = 0
a(+1) = | +1 | = 1
a(+2) = | +2 | = 2
a(+2.5) = | +2.5 | = 2.5

. . .

We refer to the thing inside the parentheses – in the first example it’d
bex, and in the second exampley – as theargument(or sometimes
theparameter) of the function.

2

Functions in Fortran 90
In my number.f90 , we saw this:

...
ELSE IF (ABS(users_number - computers_number) <= &

& close_distance) THEN
PRINT *, "Close, but no cigar."

...

So, what doesABSdo?

ABSis a function that calculates theabsolute valueof its argument.
It is the Fortran 90 analogue of the mathematical function

a(y) = | y |
(the absolute value function) that we just looked at. So:

...
ABS(-2.5) → 2.5
ABS(-2) → 2
ABS(-1) → 1
ABS(0) → 0
ABS(1) → 1
ABS(2) → 2
ABS(2.5) → 2.5

...

Note: in this example,→ denotes “evaluates to,” or, in computing
jargon, “returns.” We say “ABSof -2 evaluates to 2” or “ABSof -2
returns 2.”

An important distinction between a mathematical function and a For-
tran 90 function: a mathematical function is simply adefinition,
while a Fortran 90 functiondoes stuff. More on this presently.

3

A Quick Look at ABS

% cat abstest.f90
PROGRAM abstest

IMPLICIT NONE
PRINT *, "ABS(-2.5) = ", ABS(-2.5)
PRINT *, "ABS(-2) = ", ABS(-2)
PRINT *, "ABS(-1) = ", ABS(-1)
PRINT *, "ABS(0) = ", ABS(0)
PRINT *, "ABS(1) = ", ABS(1)
PRINT *, "ABS(2) = ", ABS(2)
PRINT *, "ABS(2.5) = ", ABS(2.5)

END PROGRAM abstest
% f95 -o abstest abstest.f90
% abstest

ABS(-2.5) = 2.5000000
ABS(-2) = 2
ABS(-1) = 1
ABS(0) = 0
ABS(1) = 1
ABS(2) = 2
ABS(2.5) = 2.5000000

(An interesting property ofABS: if its argument is anINTEGER, it
returns anINTEGERresult, but if its argument is aREAL, it returns
aREALresult. More on this later in the semester, if we have time.)

Jargon: in programming, the use of a function in an expression is
referred to as aninvocation, or more colloquially as acall. We say
that the statement

PRINT *, ABS(-2)

invokesor calls the functionABS; the statementpassesan argument
of -2 to the function; the functionABSreturnsa value of 2.

4

Intrinsic Functions in Fortran 90
Fortran 90 has a bunch of functions built into the language. These
functions are referred to asintrinsic functions, whereintrinsic means
“built into the language.” A few examples:

Function name Math Name Value Example

ABS(x) absolute value |x| ABS(-1.0) → 1.0
SQRT(x) square root x1/2 SQRT(2.0) → 1.414...
EXP(x) exponential ex EXP(1.0) → 2.718...
LOG(x) natural logarithm ln x EXP(2.718...) → 1.0
LOG10(x) common logarithm log x LOG10(100.0) → 2.0
SIN(x) sine sin x SIN(3.14...) → 0.0
COS(x) cosine cos x COS(3.14...) → -1.0
TAN(x) tangent tan x TAN(3.14...) → 0.0
CEILING(x) least integer≥ x dxe CEILING(2.5) → 3
FLOOR(x) greatest integer≤ x bxc FLOOR(2.5) → 2
INT(x) x truncated toward 0[x] INT(2.5) → 2

You’ll find an exhaustive list of all of Fortran 90’s intrinsic functions
(more than 100 of them) inProgramming in Fortran 90/95, 1st or
2nd edition, Chapter 17.

As it turns out, the set of intrinsic functions isgrossly insufficient
for most real world tasks, so in Fortran 90,and in most program-
ming languages, there are ways for programmers to develop their
ownuser-defined functions, which we’ll learn more about in a future
lesson.

5

Math: Domain & Range
In mathematics, we refer to the set of numbers that can be theargu-
ment of a given function as thedomainof that function.

Similarly, we refer to the set of numbers that can be theresult of a
given function as therangeof that function.

For example, in the case of the function

f (x) = x + 1

we define the domain to be the set of real numbers (sometimes de-
noted<), which means that thex in f (x) can be any real number.
Likewise, we also define the range to be the set of real numbers, be-
cause for every real numbery there is some real numberx such that
f (x) = y.

On the other hand, for a function

q(x) =
1

x− 1
the domain cannot include 1, because

q(1) =
1

1− 1
=

1

0
which is undefined. So the domain might be< − {1} (the set of all
real numbers except 1).

In that case, the range ofq would be the set of all real numbers except
0, because there’s no real numbery such that1/y is 0.

(Note: if you’ve taken calculus, you’ve seen that, asy gets arbitrarily
large,1/y approaches 0 as a limit – but “gets arbitrarily large” is not
a real number, and neither is “approaches 0 as a limit.”)

6

Programming: Argument Type
Fortran 90 has analogous concepts to the mathematical domain and
range:argument typeandreturn type.

Theargument type, not surprisingly, is the data type that Fortran 90
expects for an argument of a particular intrinsic function.

Some Fortran 90 intrinsic functions, such asABS, will allow you to
pass either anINTEGERor a REAL as an argument, but you still
have to use a numeric data type. If you try to pass, say, aLOGICAL
value toABS, the compiler gets upset:

% cat abslgcarg.f90
PROGRAM abs_logical_argument

IMPLICIT NONE
LOGICAL :: lgc = .TRUE.
PRINT *, ABS(lgc)

END PROGRAM abs_logical_argument
% f95 -o abslgcarg abslgcarg.f90
Error: abslgcarg.f90, line 4:

Non-numeric argument to
numeric intrinsic ABS

[f95 error termination]

7

Programming: Return Type
Just as the programming concept of argument type is analogous to
the mathematical concept of domain, so too is the programming con-
cept of return type analogous to the mathematical concept of range.

Thereturn typeof a Fortran 90 function is the data type of the value
that the function returns. The return value isguaranteed to have
that data type, and the compiler gets upset if you use the return value
inappropriately:

% cat abslgcret.f90
PROGRAM abs_logical_return

IMPLICIT NONE
LOGICAL :: lgc
lgc = ABS(-2.0)

END PROGRAM abs_logical_return
% f95 -o abslgcret abslgcret.f90
Error: abslgcret.f90, line 4:

Incompatible data types
in assignment statement

[f95 error termination]

8

More on Function Arguments
In mathematics, a function argument can be:

• a number:
f (5) = 5 + 1 = 6

• a variable:
f (z) = z + 1

• an arithmetic expression:
f (5 + 7) = (5 + 7) + 1 = 12 + 1 = 13

• another function:
f (a(w)) = |w| + 1

• any combination of these; i.e., any general expression whose
value is in the domain of the function:
f (3a(5w + 7)) = 3 (|5w + 7|) + 1

Likewise, in Fortran 90 the argument of a function can be any non-
empty expressionthat evaluates to an appropriate data type, in-
cluding an expression containing a function call.

9

Function Argument Example
% cat funcargs.f90
PROGRAM funcargs

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
REAL :: angle_in_radians
PRINT "(A,F9.7,A,F10.7)", &

& "COS(", 1.5707963, ") = ", COS(1.5707963)
PRINT "(A,F9.7,A,F10.7)", "COS(", pi, ") = ", &

& COS(pi)
PRINT "(A)", "Enter an angle in radians:"
READ *, angle_in_radians
PRINT "(A,F10.7,A,F10.7)", &

& "COS(", angle_in_radians, ") = ", &
& COS(angle_in_radians)

PRINT "(A,F10.7,A,F10.7)", &
& "ABS(COS(", angle_in_radians, ")) = ", &
& ABS(COS(angle_in_radians))

PRINT "(A,F10.7,A,F10.7)", &
& "COS(ABS(", angle_in_radians, ")) = ", &
& COS(ABS(angle_in_radians))

PRINT "(A,F10.7,A,F10.7)", &
& "ABS(COS(2.0 * ", angle_in_radians, ")) = ", &
& ABS(COS(2.0 * angle_in_radians))

PRINT "(A,F10.7,A,F10.7)", &
& "ABS(2.0 * COS(", angle_in_radians, ")) = ", &
& ABS(2.0 * COS(angle_in_radians))

PRINT "(A,F10.7,A,F10.7)", &
& "ABS(2.0 * COS(1.0 / 5.0 * ", &
& angle_in_radians, ")) = ", &
& ABS(2.0 * COS(1.0 / 5.0 * angle_in_radians))

END PROGRAM funcargs
% f95 -o funcargs funcargs.f90
% funcargs
COS(1.5707963) = 0.0000001
COS(3.1415925) = -1.0000000
Enter an angle in radians:

-3.1415926
COS(-3.1415925) = -1.0000000
ABS(COS(-3.1415925)) = 1.0000000
COS(ABS(-3.1415925)) = -1.0000000
ABS(COS(2.0 * -3.1415925)) = 1.0000000
ABS(2.0 * COS(-3.1415925)) = 2.0000000
ABS(2.0 * COS(1.0 / 5.0 * -3.1415925)) = 1.6180340

10

Using Functions
Functions are usedin expressionsin exactly the same ways that vari-
ables and constants are used. For example, a function call can be
used on the right hand side of an assignment:

REAL :: theta = 3.1415926 / 4.0
REAL :: cos_theta
cos_theta = COS(theta)

A function call can also be used in an expression in list-directed
output:

PRINT *, 2.0
PRINT *, COS(theta) ** 2.0

And, since any expression can be used as some function’s argument,
a function call can also be used as an argument to another function:

REAL,PARAMETER :: pi = 3.1415926
PRINT *, 1 + COS(ASIN(SQRT(2.0)/2.0) + pi)

However, most function calls cannot be used in initialization:

! * ILLEGAL ILLEGAL ILLEGAL
REAL :: cos_theta = COS(3.1415926)

! * ILLEGAL ILLEGAL ILLEGAL

Nor can most function calls be used in named constant declaration:

! * ILLEGAL ILLEGAL ILLEGAL
REAL,PARAMETER :: cos_theta = COS(3.1415926)

! * ILLEGAL ILLEGAL ILLEGAL

As a general rule, it’s best not to try to use function calls in initial-
izations or in named constant declarations.

11

Function Use Example

% cat funcuse.f90
PROGRAM function_use

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926

! REAL,PARAMETER :: sin_pi = SIN(3.1415926) ! ILLEGAL
! REAL :: sin_pi = SIN(pi) ! ILLEGAL
! REAL :: sin_pi = SIN(3.1415926) ! ILLEGAL

REAL :: theta, sin_pi, sin_theta
theta = 3.0 * pi / 4
sin_pi = SIN(pi)
sin_theta = SIN(theta)
PRINT *, "2.0 = ", 2.0
PRINT *, "pi = ", pi
PRINT *, "theta = ", theta
PRINT *, "SIN(pi) = ", SIN(pi)
PRINT *, "sin_pi = ", sin_pi
PRINT *, "SIN(theta) = ", SIN(theta)
PRINT *, "sin_theta = ", sin_theta
PRINT *, "SIN(theta) ** (1.0/3.0) = ", &

& SIN(theta) ** (1.0/3.0)
PRINT *, "1 + SIN(ACOS(1.0)) = ", &

& 1 + SIN(ACOS(1.0))
PRINT *, "SIN(ACOS(1.0)) = ", SIN(ACOS(1.0))
PRINT *, "SQRT(2.0) = ", SQRT(2.0)
PRINT *, "SQRT(2.0) / 2 = ", SQRT(2.0) / 2
PRINT *, "ACOS(SQRT(2.0)/2.0) = ", &

& ACOS(SQRT(2.0)/2.0)
PRINT *, "SIN(ACOS(SQRT(2.0)/2.0)) = ", &

& SIN(ACOS(SQRT(2.0)/2.0))
END PROGRAM function_use
% f95 -o funcuse funcuse.f90
% funcuse

2.0 = 2.0000000
pi = 3.1415925
theta = 2.3561945
SIN(pi) = 1.5099580E-07
sin_pi = 1.5099580E-07
SIN(theta) = 0.7071068
sin_theta = 0.7071068
SIN(theta) ** (1.0/3.0) = 0.8908987
1 + SIN(ACOS(1.0)) = 1.0000000
SIN(ACOS(1.0)) = 0.0000000E+00
SQRT(2.0) = 1.4142135
SQRT(2.0) / 2 = 0.7071068
ACOS(SQRT(2.0)/2.0) = 0.7853982
SIN(ACOS(SQRT(2.0)/2.0)) = 0.7071068

12

Evaluation of Functions in Expressions
When a function call appears in an expression – for example, on the
right hand side of an assignment statement – the function isevalu-
ated just before its value is needed, in accordance with the rules of
precedence order.

For example, ifx andy areREALvariables, andy has already been
assigned the value -10.0, then the assignment statement

x = 1 + 2.0 * 8.0 + ABS(y) / 4.0

is evaluated like so:

x = 1 + 2.0 * 8.0 + ABS(y) / 4.0 ⇒

x = 1 + 16.0 + ABS(y) / 4.0 ⇒

x = 1 + 16.0 + ABS(-10.0) / 4.0 ⇒

x = 1 + 16.0 + 10.0 / 4.0 ⇒

x = 1 + 16.0 + 2.5 ⇒

x = 1.0 + 16.0 + 2.5 ⇒

x = 17.0 + 2.5 ⇒

x = 19.5

So, the variablex is ultimately assigned the value 19.5.

13

Functions with Multiple Arguments
In mathematics, we sometimes have functions that have multiple ar-
guments:

h(x, y) = xy + 2x + 3y + 5

In this case, we know that
h(−2.5,−1.5) = (−2.5)(−1.5) + (2)(−2.5) + (3)(−1.5) + 5 = −0.75
h(−2,−0.5) = (−2)(−0.5) + (2)(−2) + (3)(−0.5) + 5 = +0.5
h(−1, 1.25) = (−1)(1.25) + (2)(−1) + (3)(1.25) + 5 = 0
h(0, 0) = (0)(0) + (2)(0) + (3)(0) + 5 = +5

Here, we define the domain of the first argument of the functionh to
be the set of all real numbers<, and likewise we define the domain
of the second argument ofh to be the set of all real numbers<, so
the domain ofh as a whole is< × <, pronounced “real times real.”

Since the result ofh is a single real value, we define the range ofh

to be<, and we denote the mapping as
h : < × < 7→ <

Similarly, in Fortran 90 we have intrinsic functions with multiple
arguments. Examples include:

Function nameMath Name Math Value

MIN(x,y) minimum if (x < y) thenx elsey
MAX(x,y) maximum if (x > y) thenx elsey
MOD(x,y) remainder x - (INT(x / y) * y)
BTEST(x,y) bit test .TRUE. if the y th bit of x is 1

Functions with multiple arguments can be used in exactly the same
ways as functions with a single argument.

In a function call, the list of arguments must be inexactly the correct
order and haveexactly the correct data types.

14

