Intrinsic Functions Outline

Intrinsic Functions Outline
Functions in Mathematics
Functions in Fortran 90

A Quick Look atABS

Intrinsic Functions in Fortran 90
Math: Domain & Range
Programming: Argument Type
Programming: Return Type

More on Function Arguments

. Function Argument Example

. Using Functions

. Function Use Example

. Evaluation of Functions in Expressions
. Functions with Multiple Arguments

©0oNOOGOAWNE

ol el
A WNRFO

SeeProgramming in Fortran 90/951st or 2nd edition, Chapter 10
section 10.4, and especially Chapter 17.

Functions in Mathematics

“In mathematics dunction is a rule that assigns to each element
of a set an element of the same or of another set.” (Bers & Karal,
Calculus 2nd ed, Holt, Reinhart & Winston, 1976, p. 50.)

So, for example, if we have a function

flz) =2 + 1
then we know that
f(=2.5) = —2'.5. + 1 = —-15
f(=2) = -2 4+ 1 = -1
f(-=1) = -1 + 1 = 0
fO) = 0 + 1 = 41
f(+1) = 41 + 1 = +2
f(+2) = 42 + 1 = +3
f(+25) = 425 + 1 = +35
Likewise, if we have a function
aly) = |y
then we know that
o(~25) = | —25 | = 25
a(-<2) =] -2 | = 2
a(-1) =] -1 | =1
a0) =1 0 | =0
a(+1) =] +1 | =1
a(+2) = | +2 | = 2
a(+25) = | | = 25

We refer to the thing inside the parentheses — in the first example it'd
bex, and in the second exampye- as theargument(or sometimes
the parametey of the function.

Functions in Fortran 90
In my_number.f90 , we saw this:

ELSE IF (ABS(users_number - computers number) <= &
& close distance) THEN
PRINT *, "Close, but no cigar."

So, what doeaBSdo?

ABSis a function that calculates tlabsolute valu®f its argument.
It is the Fortran 90 analogue of the mathematical function

aly) = |y
(the absolute value function) that we just looked at. So:

ABS(-2.5)
ABS(-2)
ABS(-1)
ABS(0)
ABS(1)
ABS(2)
ABS(2.5)

D

NNRORNN

L A

Note: in this example,—~ denotes “evaluates to,” or, in computing
jargon, ‘returns” We say ‘ABSof -2 evaluates to 2" orABSof -2
returns 2.”

An important distinction between a mathematical function and a For-
tran 90 function: a mathematical function is simplydefinition,
while a Fortran 90 functiodoes stuff More on this presently.

3

A Quick Look at ABS

% cat abstest.fO0
PROGRAM abstest
IMPLICIT NONE

PRINT * "ABS(-2.5) = ", ABS(-2.5)
PRINT * "ABS(-2) =", ABS(-2)

PRINT * "ABS(-1) = ", ABS(-1)

PRINT * "ABS(0) =", ABS(0)
PRINT * "ABS(1) =", ABS(1)
PRINT * "ABS(2) =", ABS(2)
PRINT * "ABS(2.5) = ", ABS(2.5)

END PROGRAM abstest

% f95 -0 abstest abstest.fo0
% abstest

ABS(-2.5) = 2.5000000
ABS(-2)
ABS(-1)
ABS(0)
ABS(1)
ABS(2)
ABS(2.5) = 2.5000000

NROPDN

(An interesting property oABS if its argument is alNTEGER it
returns adiNTEGERresult, but if its argument is REAL, it returns
aREALresult. More on this later in the semester, if we have time.)

Jargon: in programming, the use of a function in an expression is
referred to as amvocation or more colloquially as aall. We say
that the statement

PRINT *, ABS(-2)

invokesor callsthe functionABS the statemerpasses&n argument
of -2 to the function; the functioABSreturnsa value of 2.

4

Intrinsic Functions in Fortran 90

Fortran 90 has a bunch of functions built into the language. These
functions are referred to @astrinsic functions, wheréntrinsic means
“built into the language.” A few examples:

Function namé Math Name Value | Example

ABS(x) absolute value || ABS(-1.0) — 1.0
SQRT(X) square root z'/?2 | SQRT(2.0) — 1.414...
EXP(x) exponential e’ EXP(1.0) — 2.718...
LOG(X) natural logarithm |Inx | EXP(2.718...) — 1.0
LOG10(x) common logarithm | logz | LOG10(100.0) — 2.0
SIN(X) sine sinx | SIN(3.14...) — 0.0
COS(x) cosine cosz | COS(3.14..) — -1.0
TAN(X) tangent tanz | TAN(3.14...) — 0.0
CEILING(x) | leastinteger x [x] | CEILING(2.5) — 3
FLOOR(X) greatest integex X | |z] FLOOR(2.5) — 2
INT(X) X truncated toward O[] | INT(2.5) — 2

You'll find an exhaustive list of all of Fortran 90’s intrinsic functions
(more than 100 of them) iRrogramming in Fortran 90/951st or
2nd edition, Chapter 17.

As it turns out, the set of intrinsic functions ggossly insufficient

for most real world tasks, so in Fortran 3hd in most program-
ming languages there are ways for programmers to develop their
ownuser-defined functiongvhich we’ll learn more about in a future
lesson.

Math: Domain & Range

In mathematics, we refer to the set of numbers that can barthe
ment of a given function as thédomainof that function.

Similarly, we refer to the set of numbers that can bertdsailt of a
given function as theangeof that function.

For example, in the case of the function

flz) =« + 1
we define the domain to be the set of real numbers (sometimes de-
notedR), which means that the in f(x) can be any real number.

Likewise, we also define the range to be the set of real numbers, be-
cause for every real numbegithere is some real numbersuch that

f(x) = y.

On the other hand, for a function
(2) = —
aj‘ o
4 r—1
the domain cannot include 1, because

1 1
1) = — ==
which is undefined. So the domain might®Be- {1} (the set of all

real numbers except 1).

In that case, the range @fvould be the set of all real numbers except
0, because there’s no real numbesuch thatl /y is 0.

(Note: if you've taken calculus, you've seen thatyagets arbitrarily
large,1/y approaches 0 as a limit — but “gets arbitrarily large” is not
a real number, and neither is “approaches 0 as a limit.”)

Programming: Argument Type

Fortran 90 has analogous concepts to the mathematical domain and
range:argument typandreturn type

Theargument typenot surprisingly, is the data type that Fortran 90
expects for an argument of a particular intrinsic function.

Some Fortran 90 intrinsic functions, such/Ai8S will allow you to
pass either alNTEGER or a REAL as an argument, but you still
have to use a numeric data type. If you try to pass, sA@ICAL
value toABS the compiler gets upset:

% cat abslgcarg.fo0
PROGRAM abs logical argument
IMPLICIT NONE
LOGICAL :: Igc = .TRUE.
PRINT *, ABS(Igc)
END PROGRAM abs logical argument
% f95 -0 abslgcarg abslgcarg.fo0
Error: abslgcarg.fo0, line 4:
Non-numeric argument to
numeric intrinsic ABS
[f95 error termination]

Programming: Return Type

Just as the programming concept of argument type is analogous to
the mathematical concept of domain, so too is the programming con-
cept of return type analogous to the mathematical concept of range.

Thereturn typeof a Fortran 90 function is the data type of the value
that the function returns. The return valuegigaranteedto have

that data type, and the compiler gets upset if you use the return value
inappropriately:

% cat abslgcret.fo0
PROGRAM abs_logical return
IMPLICIT NONE
LOGICAL :: Igc
lgc = ABS(-2.0)
END PROGRAM abs logical return
% f95 -0 abslgcret abslgcret.fo90
Error: abslgcret.f90, line 4:
Incompatible data types
in assignment statement
[f95 error termination]

More on Function Arguments
In mathematics, a function argument can be:

e a number:
f6) =54+1=26

e a variable:
flz) = 2 + 1

e an arithmetic expression:
fO+7) = 6BG+7) +1=124+1 = 13

e another function:
fla(w)) = |w| + 1

e any combination of these; i.e., any general expression whose
value is in the domain of the function:
fBabw+7)) = 3(|pbw+7]) + 1

Likewise, in Fortran 90 the argument of a function can be any non-
empty expressiothat evaluates to an appropriate data type in-
cluding an expression containing a function call.

Function Argument Example

% cat funcargs.fo0
PROGRAM funcargs
IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
REAL :: angle_in_radians
PRINT "(A,F9.7,A,F10.7)",

& "COS(", 15707963 ") =", COS(1.5707963)
PRINT "(A,F9.7,A,F10.7)", "COS(", pi, ") =", &
& COS(pi)
PRINT "(A)", "Enter an angle in radians:"
READ *, angle_in_radians
PRINT "(A,F10.7,A,F10.7)",
& "COS(", angle_in_radians, ") = ",
& COS(angle_in_radians)
PRINT "(A,F10.7,A,F10.7)",
& "ABS(COS(", angle in_radians, ") =",
& ABS(COS(angle_in_radians))
PRINT "(A,F10.7,A,F10.7)",
& "COS(ABS(", angle_in_radians, ")) = ",
& COS(ABS(angle_in_radians))
PRINT "(A,F10.7,A,F10.7)",
& "ABS(COS(2.0 * ", angle_in_radians, ")) = ", &
& ABS(COS(2.0 * angle_in_radians))
PRINT "(A,F10.7,A,F10.7)",
& "ABS(2.0 * COS(", angle_in_radians, ")) = ", &
& ABS(2.0 * COS(angle_in_radians))
PRINT "(A,F10.7,A,F10.7)",
& "ABS(2.0 * COS(1.0 / 5.0 * "
& angle in_radians, ")) = "
& ABS(2.0 * COS(lO / 5.0 * angle_in_radians))

END PROGRAM funcargs

% f95 -o funcargs funcargs.f90

% funcargs

COS(1.5707963) 0.0000001
C0OS(3.1415925) = -1.0000000

Enter an angle in radians:

-3.1415926

COS(-3.1415925) = -1.0000000
ABS(COS(-3.1415925)) = 1.0000000
COS(ABS(-3.1415925)) = -1.0000000
ABS(COS(2.0 * -3.1415925)) = 1.0000000
ABS(2.0 * COS(-3.1415925)) = 2.0000000

ABS(2.0 * COS(1.0 / 5.0 * -3.1415925)) = 1.6180340

10

Using Functions

Functions are usdd expressionsn exactly the same ways that vari-
ables and constants are used. For example, a function call can be
used on the right hand side of an assignment:

REAL :: theta = 3.1415926 / 4.0
REAL :. cos theta
cos_theta = COS(theta)

A function call can also be used in an expression in list-directed
output:

PRINT *, 2.0
PRINT * COS(theta) ** 2.0

And, since any expression can be used as some function’s argument,
a function call can also be used as an argument to another function:

REAL,PARAMETER :: pi = 3.1415926
PRINT *, 1 + COS(ASIN(SQRT(2.0)/2.0) + pi)

However, most function calls cannot be used in initialization:

I * ILLEGAL ILLEGAL ILLEGAL
REAL :: cos theta = C0S(3.1415926)
I * [LLEGAL ILLEGAL ILLEGAL

Nor can most function calls be used in named constant declaration:

| * |LLEGAL ILLEGAL ILLEGAL
REAL,PARAMETER :: cos_theta = COS(3.1415926)
| * |LLEGAL ILLEGAL ILLEGAL

As a general rule, it's best not to try to use function calls in initial-
izations or in named constant declarations.

11

Function Use Example

% cat funcuse.f90
PROGRAM function_use
IMPLICIT NONE
REAL,PARAMETER :: pi = 3.1415926
! REAL,PARAMETER :: sin_pi = SIN(3.1415926) ! ILLEGAL

! REAL :: sin_pi = SIN(pi) I ILLEGAL
! REAL :: sin_pi = SIN(3.1415926) I ILLEGAL

REAL :: theta, sin_pi, sin_theta
theta =30*p /4
sin_pi = SIN(pi)
sin_theta = SIN(theta)
PRINT *, "2.0 =" 20
PRINT *, "pi =" pi
PRINT *, "theta = ", theta
PRINT *, "SIN(pi) = ", SIN(pi)
PRINT *, "sin_pi = ", sin_pi
PRINT *, "SIN(theta) = ", SIN(theta)
PRINT * "sin_theta = ", sin_theta
PRINT *, "SIN(theta) ** (1.0/3.0) =", &

& SIN(theta) ** (1.0/3.0)
PRINT * "1 + SIN(ACOS(1.0)) =" &

& 1 + SIN(ACOS(1.0))
PRINT *, "SIN(ACOS(1.0)) = ", SIN(ACOS(1.0))
PRINT *, "SQRT(2.0) = ", SQRT(2.0)
PRINT *, "SQRT(2.0) / 2 = ", SQRT(2.0) / 2
PRINT *, "ACOS(SQRT(2.0)/2.0) =" &

& ACOS(SQRT(2.0)/2.0)
PRINT *, "SIN(ACOS(SQRT(2.0)/2.0)) = ", &

& SIN(ACOS(SQRT(2.0)/2.0))

END PROGRAM function_use
% f95 -0 funcuse funcuse.f90
% funcuse

2.0 = 2.0000000

pi = 3.1415925

theta = 2.3561945

SIN(pi) = 1.5099580E-07

sin_pi = 1.5099580E-07
SIN(theta) = 0.7071068

sin_theta = 0.7071068

SIN(theta) ** (1.0/3.0) = 0.8908987

1 + SIN(ACOS(1.0))
SIN(ACOS(1.0))

1.0000000
0.0000000E+00

SQRT(2.0) = 1.4142135
SQRT(2.0) / 2 = 0.7071068
ACOS(SQRT(2.0)/2.0) = 0.7853982
SIN(ACOS(SQRT(2.0)/2.0)) = 0.7071068

12

Evaluation of Functions in Expressions

When a function call appears in an expression — for example, on the
right hand side of an assignment statement — the functienau-
atedjust before its value is needed, in accordance with the rules of
precedence order.

For example, ik andy areREALvariables, ang has already been
assigned the value -10.0, then the assignment statement

x = 1 + 20 * 80 + ABS(y) / 4.0

IS evaluated like so:

x = 1 + 20 * 80 + ABS(y) / 4.0 =
x = 1 + 16.0 + ABS(y) / 4.0 =
x = 1 + 16.0 + ABS(-10.0) / 4.0 =
x = 1 + 16.0 + 10.0 / 4.0 =
x = 1 + 16.0 + 2.5 =
x = 1.0 + 16.0 + 2.5 =
X = 17.0 + 2.5 =
X = 19.5

So, the variabla is ultimately assigned the value 19.5.

13

Functions with Multiple Arguments

In mathematics, we sometimes have functions that have multiple ar-
guments:

hz,y) = xzy + 2x + 3y + 5
In this case, we know that

h(—=25,—-15) = (=25)(=1.5) + (2)(=25) + (3)(=15) + 5 = —0.75
h(=2,-05) = (=2)(=05) + (2)(=2) + (3)(—05) + 5 = 405
h(—=1,125) = (=1)(1.25) + (2)(-1) + (3125 + 5 = 0
1(0,0) = (0)(0) + @0 o+ (30 4+ 5 = +5

Here, we define the domain of the first argument of the fundtitm
be the set of all real numbers and likewise we define the domain
of the second argument afto be the set of all real numbers so
the domain of, as a whole ist x ®, pronounced “real times real.”

Since the result ok is a single real value, we define the range:of
to bex, and we denote the mapping as

h:R xR — R
Similarly, in Fortran 90 we have intrinsic functions with multiple
arguments. Examples include:

Function naméMath Namq Math Value

MIN(X,y) minimum | if (X <y) thenx elsey
MAX(X,Y) maximum | if (X > y) thenx elsey
MOD(x,y) remainder X - (INT(x / y) *vy)
BTEST(X,y) | bittest .TRUE. iftheyth bitofx is1

Functions with multiple arguments can be used in exactly the same
ways as functions with a single argument.

In a function call, the list of arguments must beexactlythe correct
order and havexactly the correct data types.

14

