
Count-Controlled (DO) Loops Outline
1. Count-Controlled (DO) Loops Outline
2. A DO WHILE Loop That Counts
3. Count-Controlled Loops
4. Count-Controlled Loop Flowchart
5. Explicitly Count-Controlled DO Loops
6. Explicitly Count-Controlled DO Loop Flowchart
7. Three Programs That Behave Identically
8. Identical Behavior: Proof
9. Identical Behavior: Proof (continued)

10. Explicitly Count-Controlled DO Loop
11. DO Loop Details
12. DO Loop Application
13. DO Loop Application (continued)
14. DO Loop with an Explicit Increment
15. DO Loop w/Explicit Increment (continued)
16. DO Loop with a Negative Increment
17. DO Loop with Named Constants
18. DO Loop with Variables
19. DO Loop with Expressions
20. DO Loop with a REAL Counter: BAD BAD BAD
21. Why REAL Counters Are BAD BAD BAD
22. Replacing a REAL Counter with an INTEGER Counter
23. Debugging a DO Loop
24. Debugging a DO Loop: PRINT Statements in the Loop Body
25. Debugging a DO Loop: PRINT Statements (continued)
26. Debugging a DO Loop: Removing PRINT Statements
27. Nesting DO Loops Inside IF-THEN Blocks and Vice Versa
28. Nesting DO Loop Inside IF-THEN Block Example Run
29. Nested DO Loops
30. Output of Nested DO Loop Example
31. Changing the Loop Bounds Inside the Loop: BAD BAD BAD!
32. Changing the Loop Index Inside the Loop: ILLEGAL!

See Programming in Fortran 90/95, 1st or 2nd edition, Chapter 13,
section 13.1.

1

A DO WHILE Loop That Counts

% cat dowhilecount.f90
PROGRAM do_while_count

IMPLICIT NONE
INTEGER :: initial_value, final_value
INTEGER :: current_value
INTEGER :: sum
PRINT *, "What value would you like to ", &

& "start counting at?"
READ *, initial_value
PRINT *, "What value would you like to ", &

& "stop counting at,"
PRINT *, " which must be greater than ", &

& "or equal to ", initial_value, "."
READ *, final_value
IF (final_value < initial_value) THEN

PRINT *, "ERROR: the final value ", &
& final_value

PRINT *, " is less than the ", &
& "initial value ", initial_value, "."

STOP
END IF !! (final_value < initial_value)
sum = 0
current_value = initial_value
DO WHILE (current_value <= final_value)

sum = sum + current_value
current_value = current_value + 1

END DO !! WHILE (current_value <= final_value)
PRINT *, "The sum of the integers from ", &

& initial_value, " through ", final_value, &
& " is ", sum, "."

END PROGRAM do_while_count
% f95 -o dowhilecount dowhilecount.f90
% dowhilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
which must be greater than or equal to 1 .

0
ERROR: the final value 0
is less than the initial value 1 .

% dowhilecount
What value would you like to start counting at?
1
What value would you like to stop counting at,
which must be greater than or equal to 1 .

5
The sum of the integers from 1 through 5 is 15 .

2

Count-Controlled Loops
On the previous slide, we saw a case of a loop that executes a specific
number of iterations, by using a counter variable that is initialized
to a particular initial value and is incremented at the end of each
iteration of the loop, until it passes a particular final value:

sum = 0
current_value = initial_value
DO WHILE (current_value <= final_value)

sum = sum + current_value
current_value = current_value + 1

END DO !! WHILE (current_value <= final_value)

We call this kind of loop a count-controlled loop. If we express a
count-controlled loop as a DO WHILE loop, then the general form
is:

counter = initial value
DO WHILE (counter <= final value)

statement1
statement2
...
counter = counter + 1

END DO !! WHILE (counter <= final value)

Count-controlled loops are among the most commonly used kinds of
loops. They’re so common that we have a special construct for them,
called an explicitly count-controlled loop.

3

Count-Controlled Loop Flowchart

True

..

.

..

.

..

.

statement_inside1

counter = counter + 1

statement_inside2

statement_after

False

counter = initial_value

statement_inside1

statement_inside2
. . .

statement_after
END DO

counter = counter + 1

counter = initial_value

final_value
counter <=

DO WHILE (counter <= final_value)

4

Explicitly Count-Controlled DO Loops
An explicitly count-controlled DO loop has this form:

DO counter = initial value, final value
statement1
statement2

...
END DO !! counter = initial value, final value

An explicitly count-controlled DO loop behaves exactly the same as
a count-controlled DO WHILE loop:

counter = initial value
DO WHILE (counter <= final value)

statement1
statement2
...
counter = counter + 1

END DO !! WHILE (counter <= final value)

5

Explicitly Count-Controlled Loop
Flowchart

True

...

...

...

counter = counter + 1

statement_after

statement_inside1

False

counter = initial_value

statement_inside2

counter <=
final_value

. . .

statement_inside1

statement_inside2

END DO
statement_after

DO counter = initial_value, final_value

6

Three Programs That Behave Identically
PROGRAM exam1outputa3

IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
count = 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3

PROGRAM exam1outputa3_dowhile_loop
IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
count = 1
DO WHILE (count <= 5)

sum = sum + count
count = count + 1

END DO !! WHILE (count <= 5)
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3_dowhile_loop

PROGRAM exam1outputa3_count_loop
IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
DO count = 1, 5

sum = sum + count
END DO !! count = 1, 5
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3_count_loop

7

Identical Behavior: Proof
% cat exam1outputa3.f90
PROGRAM exam1outputa3

IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
count = 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
sum = sum + count
count = count + 1
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3
% f95 -o exam1outputa3 exam1outputa3.f90
% exam1outputa3
count = 6
sum = 15

% cat exam1outputa3_dowhile_loop.f90
PROGRAM exam1outputa3_dowhile_loop

IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
count = 1
DO WHILE (count <= 5)

sum = sum + count
count = count + 1

END DO !! WHILE (count <= 5)
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3_dowhile_loop
% f95 -o exam1outputa3_dowhile_loop

�

exam1outputa3_dowhile_loop.f90
% exam1outputa3_dowhile_loop
count = 6
sum = 15

8

Identical Behavior: Proof (continued)

% cat exam1outputa3_dowhile_loop.f90
PROGRAM exam1outputa3_dowhile_loop

IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
count = 1
DO WHILE (count <= 5)

sum = sum + count
count = count + 1

END DO !! WHILE (count <= 5)
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3_dowhile_loop
% f95 -o exam1outputa3_dowhile_loop

�

exam1outputa3_dowhile_loop.f90
% exam1outputa3_dowhile_loop
count = 6
sum = 15

% cat exam1outputa3_count_loop.f90
PROGRAM exam1outputa3_count_loop

IMPLICIT NONE
INTEGER :: count
INTEGER :: sum = 0
DO count = 1, 5

sum = sum + count
END DO !! count = 1, 5
PRINT *, "count = ", count
PRINT *, "sum = ", sum

END PROGRAM exam1outputa3_count_loop
% f95 -o exam1outputa3_count_loop

�

exam1outputa3_count_loop.f90
% exam1outputa3_count_loop
count = 6
sum = 15

9

Explicitly Count-Controlled DO Loop
% cat product_loop.f90
PROGRAM product_loop

IMPLICIT NONE
INTEGER :: product = 1
INTEGER :: count
DO count = 1, 5

product = product * count
END DO !! count = 1, 5
PRINT *, "After the loop: count = ", &

& count, ", product = ", product
END PROGRAM product_loop
% f95 -o product_loop product_loop.f90
% product_loop
After the loop: count = 6 , product = 120

When the DO statement is encountered:

1. The loop counter variable (sometimes called the loop index) is
assigned the initial value (sometimes called the lower bound).

2. The loop counter is compared to the final value (sometimes called
the upper bound), and if the loop counter is greater than the final
value, then the loop is exited.

3. Each statement inside the loop body is executed in sequence.
4. When the end of the loop body is reached (indicated by the
END DO statement), the loop counter is incremented by the loop
increment value, sometimes called the stride. By default, the
loop increment value is 1 (though it can be explicitly set to any
integer value).

5. The program jumps back up to step 2.

We refer to each trip through the body of the loop as an iteration or
a pass.

10

DO Loop Details
Suppose you have an explicitly count-controlled DO loop that looks
like this:

INTEGER :: product = 1
INTEGER :: count
DO count = 1, 5

product = product * count
END DO !! count = 1, 5

The above program fragment behaves identically the same as:

! Program Trace

INTEGER :: product = 1 ! product = 1

INTEGER :: count ! count is undefined

count = 1 ! count = 1, product = 1

product = product * count ! count = 1, product = 1

count = count + 1 ! count = 2, product = 1

product = product * count ! count = 2, product = 2

count = count + 1 ! count = 3, product = 3

product = product * count ! count = 3, product = 6

count = count + 1 ! count = 4, product = 6

product = product * count ! count = 4, product = 24

count = count + 1 ! count = 5, product = 24

product = product * count ! count = 5, product = 120

count = count + 1 ! count = 6, product = 120

11

DO Loop Application
Suppose that there’s a line of a dozen students waiting for tickets for
the next OU-Texas football game.

How many different orders can they have in line?

� The head of the line could be any student.

� The 2nd position in line could be any student except the student
at the head of the line.

� The 3rd position in line could be any student except the student
at the head of the line or the student in the 2nd position.

And so on.

Generalizing, we have that the number of different orders of the stu-
dents is:

(12) (11) (10) ... (2) (1)

We can also express this in the other direction:

(1) (2) (3) ... (12)

In fact, for any number of students n, we have that the number of
orders is:

(1) (2) (3) ... (n)

This arithmetic expression is called “n factorial”, denoted n!

We say that there are n! permutations, or orderings, of the n students.

12

DO Loop Application (continued)
The number of permutations of n objects is:

P(n) = n! = (1) (2) (3) ... (n)

Here’s a program that calculates permutations:

% cat permute.f90
PROGRAM permute

IMPLICIT NONE
INTEGER :: number_of_students
INTEGER :: permutations
INTEGER :: count
PRINT *, "How many students are ", &

& "in line for tickets?"
READ *, number_of_students
permutations = 1
DO count = 1, number_of_students

permutations = permutations * count
END DO !! count = 1, number_of_students
PRINT *, "There are ", permutations, &

& " different orders"
PRINT *, " in which the ", &

& number_of_students, &
& " students can stand"

PRINT *, " in line."
END PROGRAM permute
% f95 -o permute permute.f90
% permute
How many students are in line for tickets?
12
There are 479001600 different orders
in which the 12 students can stand
in line.

13

DO Loop with an Explicit Increment
The most common increment for a DO loop is 1. For convenience,
therefore, we allow a loop increment of 1 to be implied: if a DO
loop has an increment of 1, then the DO statement doesn’t require
the increment to be stated explicitly. For example:

INTEGER :: product = 1
INTEGER :: count
DO count = 1, 5

product = product * count
END DO !! count = 1, 5

On the other hand, we could state the loop increment explicitly in
the DO statement, by putting a comma after the final value, and then
the increment:

INTEGER :: product = 1
INTEGER :: count
DO count = 1, 5, 1

product = product * count
END DO !! count = 1, 5, 1

The above two program fragments behave identically. Notice that
both of the above loops have 5 iterations:

� count = 1
� count = 2
� count = 3
� count = 4
� count = 5

14

DO Loop w/Explicit Increment (continued)
On the other hand, if the loop increment is not 1, then it must be
explicitly stated:

INTEGER :: product = 1
INTEGER :: count
DO count = 1, 5, 2

product = product * count
END DO !! count = 1, 5, 2

Notice that the above loop has only 3 iterations:

� count = 1
� count = 3
� count = 5

The above program fragment behaves identically to:

INTEGER :: product = 1
INTEGER :: count
count = 1 ! count = 1, product = 1
product = product * count ! count = 1, product = 1
count = count + 2 ! count = 3, product = 1
product = product * count ! count = 3, product = 3
count = count + 2 ! count = 5, product = 3
product = product * count ! count = 5, product = 15
count = count + 2 ! count = 7, product = 15

15

DO Loop with a Negative Increment
Sometimes, we want to loop backwards, from a high initial value to
a low final value. To do this, we use a negative loop increment:
% cat decimaldigits.f90
PROGRAM decimal_digits

IMPLICIT NONE
INTEGER,PARAMETER :: input_digits = 4
INTEGER,PARAMETER :: base = 10
INTEGER :: base_power, input_value
INTEGER :: base_digit_value, output_digit
PRINT *, "Input an integer of no more than ", &

& input_digits, " digits:"
READ *, input_value
DO base_power = input_digits - 1, 0, -1

base_digit_value = base ** base_power
IF (input_value >= base_digit_value) THEN

output_digit = &
& input_value / base_digit_value

PRINT "(I2,A,I2,A,I1)", base, " ** ", &
& base_power, ": ", output_digit

input_value = &
& input_value - &
& output_digit * base_digit_value

END IF !! (input_value >= base_digit_value)
END DO !! base_power = input_digits - 1, 0, -1

END PROGRAM decimal_digits
% f95 -o decimaldigits decimaldigits.f90
% decimaldigits
Input an integer of no more than 4 digits:
2345

10 ** 3: 2
10 ** 2: 3
10 ** 1: 4
10 ** 0: 5
% decimaldigits
Input an integer of no more than 4 digits:
8765

10 ** 3: 8
10 ** 2: 7
10 ** 1: 6
10 ** 0: 5

16

DO Loop with Named Constants
For the loop lower bound and upper bound, and the stride if there is
one, we can use INTEGER named constants:

% cat loopbndconsts.f90
PROGRAM loop_bounds_named_constants

IMPLICIT NONE
INTEGER,PARAMETER :: initial_value = 1
INTEGER,PARAMETER :: final_value = 20
INTEGER,PARAMETER :: stride = 3
INTEGER :: count, sum = 0
DO count = initial_value, final_value, stride

sum = sum + count
PRINT *, "count = ", count, ", sum = ", sum

END DO !! count = initial_value, final_value, stride
PRINT *, "After loop, count = ", count, &

& ", sum = ", sum, "."
END PROGRAM loop_bounds_named_constants
% f95 -o loopbndconsts loopbndconsts.f90
% loopbndconsts
count = 1 , sum = 1
count = 4 , sum = 5
count = 7 , sum = 12
count = 10 , sum = 22
count = 13 , sum = 35
count = 16 , sum = 51
count = 19 , sum = 70
After loop, count = 22 , sum = 70 .

In fact, we should use INTEGER named constants rather than
INTEGER literal constants: it’s much better programming practice,
because it makes it much easier to change the loop bounds (and the
stride, if there is one).

17

DO Loop with Variables
For the loop lower bound and upper bound, and the stride if there is
one, we can use INTEGER variables:

% cat loopbndvars.f90
PROGRAM loop_bounds_variables

IMPLICIT NONE
INTEGER :: initial_value, final_value, stride
INTEGER :: count, sum = 0
PRINT *, "What are the initial, final and ", &

& "stride values?"
READ *, initial_value, final_value, stride
DO count = initial_value, final_value, stride

sum = sum + count
PRINT *, "count = ", count, ", sum = ", sum

END DO !! count = initial_value, final_value, stride
PRINT *, "After the loop, count = ", count, &

& ", sum = ", sum, "."
END PROGRAM loop_bounds_variables
% f95 -o loopbndvars loopbndvars.f90
% loopbndvars
What are the initial, final and stride values?
1, 20, 4
count = 1 , sum = 1
count = 5 , sum = 6
count = 9 , sum = 15
count = 13 , sum = 28
count = 17 , sum = 45
After the loop, count = 21 , sum = 45 .

% loopbndvars
What are the initial, final and stride values?
5 25 5
count = 5 , sum = 5
count = 10 , sum = 15
count = 15 , sum = 30
count = 20 , sum = 50
count = 25 , sum = 75
After the loop, count = 30 , sum = 75 .

18

DO Loop with Expressions
If we don’t happen to have a variable handy that represents one of the
loop bounds or the loop increment, then we can use an expression:

% cat loopbndexprs.f90
PROGRAM loop_bounds_expressions

IMPLICIT NONE
INTEGER :: initial_value, final_value, multiplier
INTEGER :: count, sum = 0
PRINT *, "What are the initial, final and ", &

& "multiplier values?"
READ *, initial_value, final_value, multiplier
DO count = initial_value * multiplier, &

& final_value * multiplier, &
& multiplier - 1

sum = sum + count
PRINT *, "count = ", count, ", sum = ", sum

END DO !! count = ...
PRINT *, "After the loop, count = ", count, &

& ", sum = ", sum, "."
END PROGRAM loop_bounds_expressions
% f95 -o loopbndexprs loopbndexprs.f90
% loopbndexprs
What are the initial, final and multiplier values?
1, 9, 4
count = 4 , sum = 4
count = 7 , sum = 11
count = 10 , sum = 21
count = 13 , sum = 34
count = 16 , sum = 50
count = 19 , sum = 69
count = 22 , sum = 91
count = 25 , sum = 116
count = 28 , sum = 144
count = 31 , sum = 175
count = 34 , sum = 209
After the loop, count = 37 , sum = 209 .

19

DO Loop with a REAL Counter:
BAD BAD BAD

All of the examples of DO loops that we’ve seen so far have used
INTEGER counters. In principle, Fortran 90 also supports REAL
counters:

% cat doreal.f90
PROGRAM do_real_counter

IMPLICIT NONE
REAL :: real_count
REAL :: sum = 0.0
DO real_count = 1.0, 10.0

sum = sum + real_count
END DO !! real_count = 1.0, 10.0
PRINT *, "After the loop:"
PRINT *, " real_count = ", real_count, &

& ", sum = ", sum, "."
END PROGRAM do_real_counter
% f95 -o doreal doreal.f90
Deleted feature used: doreal.f90, line 5:
Non-integer DO control variable

Deleted feature used: doreal.f90, line 5:
Non-integer DO limit expression

Deleted feature used: doreal.f90, line 5:
Non-integer DO limit expression

% doreal
After the loop:
real_count = 11.0000000 , sum = 55.0000000 .

Notice that the compiler objects very strongly to the use of a REAL
counter in the DO loop. Why?

20

Why REAL Counters Are BAD BAD BAD
REAL counters are generally considered to be very poor program-
ming practice, because a REAL counter is an approximation, and
therefore a loop with lots of iterations will accumulate a lot of error
in the counter, as the error from each approximation adds up:
% cat doreal2.f90
PROGRAM do_real_counter2

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.14
REAL :: radians
DO radians = 0, 100.0 * pi, pi / 5.0

PRINT ’(A,F19.15)’, "radians = ", radians
END DO !! radians = 0, 100.0 * pi, pi / 5.0
PRINT *, "After the loop:"
PRINT ’(A,F19.15)’, " 100.0 * pi = ", 100.0 * pi
PRINT ’(A,F19.15)’, " radians = ", radians

END PROGRAM do_real_counter2
% f95 -o doreal2 doreal2.f90
Deleted feature used: doreal2.f90, line 5:
Non-integer DO control variable

Deleted feature used: doreal2.f90, line 5:
Non-integer DO limit expression

Deleted feature used: doreal2.f90, line 5:
Non-integer DO limit expression

% doreal2
radians = 0.000000000000000
radians = 0.628000020980835
radians = 1.256000041961670
radians = 1.884000062942505
radians = 2.512000083923340
radians = 3.140000104904175
radians = 3.768000125885010
...
radians = 308.976196289062500
radians = 309.604187011718750
radians = 310.232177734375000
radians = 310.860168457031250
radians = 311.488159179687500
radians = 312.116149902343750
radians = 312.744140625000000
radians = 313.372131347656250
After the loop:
100.0 * pi = 314.000000000000000
radians = 314.000122070312500

21

Replacing a REAL Counter
with an INTEGER Counter

Happily, we rarely need a REAL counter, because we can use an
INTEGER counter and calculate the REAL value in the loop body:
% cat doreal2int.f90
PROGRAM do_real_counter2_integer

IMPLICIT NONE
REAL,PARAMETER :: pi = 3.14
REAL :: radians
INTEGER :: radians_counter
DO radians_counter = 0, 500

radians = radians_counter * pi / 5.0
PRINT ’(A,F19.15)’, "radians = ", radians

END DO !! radians_counter = 0, 500
PRINT *, "After the loop:"
PRINT ’(A,F19.15)’, " 100.0 * pi = ", &

& 100.0 * pi
PRINT ’(A,F19.15)’, " radians = ", &

& radians
PRINT ’(A,I3)’, " radians_counter = ", &

& radians_counter
END PROGRAM do_real_counter2_integer
% f95 -o doreal2int doreal2int.f90
% doreal2int
radians = 0.000000000000000
radians = 0.628000020980835
radians = 1.256000041961670
radians = 1.884000062942505
radians = 2.512000083923340
radians = 3.140000104904175
radians = 3.768000125885010
...
radians = 308.976013183593750
radians = 309.604003906250000
radians = 310.232025146484375
radians = 310.860015869140625
radians = 311.488006591796875
radians = 312.115997314453125
radians = 312.744018554687500
radians = 313.372009277343750
radians = 314.000000000000000
After the loop:
100.0 * pi = 314.000000000000000
radians = 314.000000000000000
radians_counter = 501

Notice that there’s no accumulated error from approximating REAL
quantities, because each approximation is independent of the others.

22

Debugging a DO Loop
Suppose you have a program that has a DO loop, and it looks like the
DO loop has a bug in it:

% cat sumbad.f90
PROGRAM summer

IMPLICIT NONE
INTEGER :: initial_value, final_value, count
INTEGER :: sum = 0
PRINT *, "What are the summation limits?"
READ *, initial_value, final_value
DO count = initial_value, final_value

sum = sum * count
END DO !! count = initial_value, final_value
PRINT *, "The sum from ", initial_value, " to ", &

& final_value, " is ", sum, "."
END PROGRAM summer
% f95 -o sumbad sumbad.f90
% sumbad
What are the summation limits?
1, 5
The sum from 1 to 5 is 0 .

Assuming that the bug isn’t obvious just from looking, how do we
figure out where the bug is?

23

Debugging a DO Loop:
PRINT Statements in the Loop Body

One thing we can try is to put some PRINT statements inside the
loop body:

% cat sumbaddebug.f90
PROGRAM summer

IMPLICIT NONE
INTEGER :: initial_value, final_value, count
INTEGER :: sum = 0
PRINT *, "What are the summation limits?"
READ *, initial_value, final_value
DO count = initial_value, final_value

sum = sum * count
PRINT *, "count = ", count, ", sum = ", sum

END DO !! count = initial_value, final_value
PRINT *, "The sum from ", initial_value, " to ", &

& final_value, " is ", sum, "."
END PROGRAM summer
% f95 -o sumbaddebug sumbaddebug.f90
% sumbaddebug
What are the summation limits?
1, 5
count = 1 , sum = 0
count = 2 , sum = 0
count = 3 , sum = 0
count = 4 , sum = 0
count = 5 , sum = 0
The sum from 1 to 5 is 0 .

Often, the output of the loop body PRINT statements will tell us
where to find the bug.

24

Debugging a DO Loop:
PRINT Statements (Continued)

When we’ve made a change, we can check to make sure things are
going well using the same PRINT statements inside the loop body:

% cat sumgooddebug.f90
PROGRAM summer

IMPLICIT NONE
INTEGER :: initial_value, final_value, count
INTEGER :: sum = 0
PRINT *, "What are the summation limits?"
READ *, initial_value, final_value
DO count = initial_value, final_value

sum = sum + count
PRINT *, "count = ", count, ", sum = ", sum

END DO !! count = initial_value, final_value
PRINT *, "The sum from ", initial_value, " to ", &

& final_value, " is ", sum, "."
END PROGRAM summer
% f95 -o sumgooddebug sumgooddebug.f90
% sumgooddebug
What are the summation limits?
1, 5
count = 1 , sum = 1
count = 2 , sum = 3
count = 3 , sum = 6
count = 4 , sum = 10
count = 5 , sum = 15
The sum from 1 to 5 is 15 .

25

Debugging a DO Loop:
Removing PRINT Statements

Once we know that the loop is debugged, we can delete the PRINT
statements inside the loop body:

% cat sumgood.f90
PROGRAM summer

IMPLICIT NONE
INTEGER :: initial_value, final_value, count
INTEGER :: sum = 0
PRINT *, "What are the summation limits?"
READ *, initial_value, final_value
DO count = initial_value, final_value

sum = sum + count
END DO !! count = initial_value, final_value
PRINT *, "The sum from ", initial_value, " to ", &

& final_value, " is ", sum, "."
END PROGRAM summer
% f95 -o sumgood sumgood.f90
% sumgood
What are the summation limits?
1, 5
The sum from 1 to 5 is 15 .

Aside: why can’t the name of this program be sum?

26

Nesting DO Loops Inside IF-THEN Blocks
and Vice Versa

We can nest DO loops inside IF-THEN blocks and IF-THEN blocks
inside DO loops:
PROGRAM it_is_prime

IMPLICIT NONE
INTEGER,PARAMETER :: first_prime = 2
INTEGER,PARAMETER :: no_remainder = 0, increment = 1
INTEGER :: input_value, factor, remainder
LOGICAL :: is_prime
PRINT *, "What integer greater than or equal to ", &

& first_prime, " would you"
PRINT *, " like to check to see whether it’s prime?"
READ *, input_value
IF (input_value < first_prime) THEN

PRINT *, "Sorry, I can’t determine whether ", &
& input_value, " is a"

PRINT *, " prime, because it isn’t at least ", &
& first_prime, "."

ELSE IF (input_value == first_prime) THEN
PRINT *, "Duh! Of course ", first_prime, &

& " is a prime!"
ELSE !! (input_value == first_prime)

is_prime = .TRUE.
factor = first_prime
DO WHILE (is_prime .AND. (factor < input_value))

remainder = &
& input_value - ((input_value / factor) * factor)

IF (remainder == no_remainder) THEN
is_prime = .FALSE.

ELSE !! (remainder == no_remainder)
factor = factor + increment

END IF !! (remainder == no_remainder)...ELSE
END DO !! WHILE (is_prime .AND. (factor < input_value))
IF (is_prime) THEN

PRINT *, "Yes! ", input_value, " is a prime!"
ELSE !! (is_prime)

PRINT *, "Hey! ", input_value, " isn’t a prime!"
PRINT *, "One of its factors is ", factor, "."

END IF !! (is_prime)...ELSE
END IF !! (input_value == first_prime)...ELSE

END PROGRAM it_is_prime

We can also nest IF-THEN blocks inside IF-THEN blocks inside
DO loops, and DO loops inside IF-THEN blocks inside IF-THEN
blocks, and so on, and so on, and so on ...

27

Nested DO Loop Inside IF-THEN Block
Example Run

% f95 -o itisprime itisprime.f90
% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

1
Sorry, I can’t determine whether 1 is a
prime, because it isn’t at least 2 .

% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

2
Duh! Of course 2 is a prime!

% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

3
Yes! 3 is a prime!

% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

4
Hey! 4 isn’t a prime!
One of its factors is 2 .

% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

12345
Hey! 12345 isn’t a prime!
One of its factors is 3 .

% itisprime
What integer greater than or equal to 2 would you
like to check to see whether it’s prime?

97
Yes! 97 is a prime!

28

Nested DO Loops
PROGRAM all_primes

IMPLICIT NONE
INTEGER,PARAMETER :: first_prime = 2
INTEGER,PARAMETER :: no_remainder = 0
INTEGER,PARAMETER :: increment = 1, decrement = -1
INTEGER :: initial_value,final_value,loop_increment
INTEGER :: this_value,remainder,factor
LOGICAL :: is_prime
PRINT *, "What are the loop bounds that you would like"
PRINT *, " to check to see which numbers are prime?"
READ *, initial_value,final_value
IF (initial_value < first_prime) THEN

IF (final_value < first_prime) THEN
PRINT *, "Hey! None of the values you want are ", &

& first_prime
PRINT *, " or greater, so none of them can be primes."
STOP

END IF !! (final_value < first_prime)
PRINT *, "No value less than ", first_prime, &

& " is prime, so I’ll start at ", first_prime, "."
initial_value = first_prime

END IF !! (initial_value < first_prime)
IF (final_value < first_prime) THEN

PRINT *, "No value less than ", first_prime, &
& " is prime, so I’ll end at ", first_prime, "."

final_value = first_prime
END IF !! (final_value < first_prime)
IF (initial_value > final_value) THEN

loop_increment = decrement
ELSE !! (initial_value > final_value)

loop_increment = increment
END IF !! (initial_value > final_value)...ELSE
PRINT *, "Primes from ", initial_value, " to ", final_value, ":"
DO this_value = initial_value, final_value, loop_increment

is_prime = .TRUE.
factor = first_prime
DO WHILE (is_prime .AND. (factor < this_value))

remainder = &
& this_value - ((this_value / factor) * factor)

IF (remainder == no_remainder) THEN
is_prime = .FALSE.

ELSE !! (remainder == no_remainder)
factor = factor + increment

END IF !! (remainder == no_remainder)...ELSE
END DO !! WHILE (is_prime .AND. (factor < this_value))
IF (is_prime) THEN

PRINT *, this_value
END IF !! (is_prime)

END DO !! this_value = initial_value, final_value, loop_increment
END PROGRAM all_primes

29

Output of Nested DO Loop Example
% f95 -o allprimes allprimes.f90
% allprimes
What are the loop bounds that you would like

to check to see which numbers are prime?
0 1
Hey! None of the values you want are 2

or greater, so none of them can be primes.
% allprimes
What are the loop bounds that you would like

to check to see which numbers are prime?
2 2
Primes from 2 to 2 :
2

% allprimes
What are the loop bounds that you would like

to check to see which numbers are prime?
4 2
Primes from 4 to 2 :
3
2

% allprimes
What are the loop bounds that you would like

to check to see which numbers are prime?
1 100
No value less than 2 is prime, so I’ll start at 2 .
Primes from 2 to 100 :
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

30

Changing the Loop Bounds Inside the Loop:
BAD BAD BAD!

% cat loopbndschg.f90
PROGRAM loop_bounds_change

IMPLICIT NONE
INTEGER :: initial_value, final_value, &

& maximum_value
INTEGER :: count, sum = 0
PRINT *, "What are the initial, final and ", &

& "maximum values?"
READ *, initial_value, final_value, maximum_value
DO count = initial_value, final_value

sum = sum + count
IF (sum > maximum_value) THEN

! BAD BAD BAD
! BAD BAD BAD
! BAD BAD BAD

final_value = final_value - 1 ! BAD BAD BAD

! BAD BAD BAD
! BAD BAD BAD
! BAD BAD BAD

END IF !! (sum > maximum_value)
PRINT *, "count = ", count, ", sum = ", sum, &

& ", final_value = ", final_value
END DO !! count = initial_value, final_value
PRINT *, "sum = ", sum

END PROGRAM loop_bounds_change
% f95 -o loopbndschg loopbndschg.f90
% loopbndschg
What are the initial, final and maximum values?
1, 10, 40
count = 1 , sum = 1 , final_value = 10
count = 2 , sum = 3 , final_value = 10
count = 3 , sum = 6 , final_value = 10
count = 4 , sum = 10 , final_value = 10
count = 5 , sum = 15 , final_value = 10
count = 6 , sum = 21 , final_value = 10
count = 7 , sum = 28 , final_value = 10
count = 8 , sum = 36 , final_value = 10
count = 9 , sum = 45 , final_value = 9
count = 10 , sum = 55 , final_value = 8
sum = 55

31

Changing the Loop Index Inside the Loop:
ILLEGAL!

% cat loopidxchg.f90
PROGRAM loop_index_change

IMPLICIT NONE
INTEGER :: initial_value, final_value, &

& maximum_value
INTEGER :: count, sum = 0
PRINT *, "What are the initial, ", &

& "final and maximum values?"
READ *, initial_value, final_value, &

& maximum_value
DO count = initial_value, final_value

sum = sum + count
IF (sum > maximum_value) THEN

! ILLEGAL ILLEGAL ILLEGAL
! ILLEGAL ILLEGAL ILLEGAL
! ILLEGAL ILLEGAL ILLEGAL

count = count + 1 ! ILLEGAL ILLEGAL

! ILLEGAL ILLEGAL ILLEGAL
! ILLEGAL ILLEGAL ILLEGAL
! ILLEGAL ILLEGAL ILLEGAL

END IF !! (sum > maximum_value)
PRINT *, "count = ", count, ", sum = ", sum, &

& ", final_value = ", final_value
END DO !! count = initial_value, final_value
PRINT *, "sum = ", sum

END PROGRAM loop_index_change
% f95 -o loopidxchg loopidxchg.f90
Error: loopidxchg.f90, line 17:

Assignment to DO variable COUNT
detected at COUNT@=

[f95 terminated - errors found by pass 1]

32

