
Functions in C

Fortran 90 has three kinds of units: aprogram unit, subroutine units
andfunction units.

In C, all units are functions.

For example, the C counterpart to the Fortran 90 program unit is the
function namedmain :

#include <stdio.h>

main ()
{ /* main */

float w, x, y, z;
int i, j, k;

w = 0.5; x = 5.0; y = 10.0;
z = x + y * w;
i = j = k = 5;
printf("x = %f, y = %f, z = %f \n", x, y, z);
printf("i = %d, j = %d, k = %d \n", i, j, k);

} /* main */

Every C program must have a function namedmain ; it’s the func-
tion where the program begins execution.

C also has a bunch of standardlibrary functions, which are functions
that come predefined for everyone to use.

1

Standard Library Functions in C 1

C has a bunch of standardlibrary functionsthat everyone gets to use
for free.

They are analogous to Fortran 90’s intrinsic functions, but they’re
not quite the same.

Why? Because Fortran 90’s intrinsic functions are built directly into
the language, while C’s library functions are not really built into
the language as such; you could replace them with your own if you
wanted.

Here’s some example standard library functions in C:

Function Return Type Return Value #include file
printf int number of characters written stdio.h

Print (output) to standard output (the terminal) in the given format
scanf int number of items input stdio.h

Scan (input) from standard input (the keyboard) in the given format
isalpha int Boolean: is argument a letter? ctype.h
isdigit int Boolean: is argument a digit? ctype.h
strcpy char [] string containing copy string.h

Copy a string into another (empty) string
strcmp int comparison of two strings string.h

Lexical comparison of two strings; result is index in which
strings differ: negative value if first string less than second,
positive if vice versa, zero if equal

sqrt float square root of argument math.h

pow float 1st argument raised to 2nd argumentmath.h

1 Brian W. Kernighan & Dennis M. Ritchie,The C Programming Language, 2nd ed., Prentice
Hall, New Jersey, 1988, pp. 241-258.

2

Functions in C That Don’t Return Anything

In C, all units are functions. But what if we want a unit that doesn’t
return anything?

In that case, we have a special return type:void . This type means
“no value at all.”

We’ve already seen an example of avoid library function:

exit(-1);

Functions with return typevoid in C are analogous to subroutines
in Fortran 90.

Functions in C
Whose Return Value Is Ignored

We saw on the previous slide that the standard I/O library function
printf returns an integer representing the number of characters
printed.

Yet in every case where we’ve usedprintf , we haven’t considered
the return value; we’ve just used theprintf function as though it
were a Fortran 90PRINT statement:

printf("x = %f, y = %f, z = %f \n",
x, y, z);

C allows us to ignore the return value of any function; unlike Fortran
90, we don’t have to use the return value in an expression.

If we ignore a function’s return value, it just disappears. Computer
geeks refer to this as “sending it to the bit bucket.”

3

Example: Return Value of printf

% cat assn3.c
#include <stdio.h>

main ()
{ /* main */

float w, x, y, z;
int i, j, k;
int numprinted;

w = 0.5; x = 5.0; y = 10.0;
z =

x + y * w;
i = 12; j = 5; k = i / j;
numprinted =

printf("x = %f, y = %f, z = %f \n",
x, y, z);

printf("numprinted = %d \n",
numprinted);

numprinted =
printf("i = %d, j = %d, k = %d \n",
i, j, k);

printf("numprinted = %d \n",
numprinted);

} /* main */
% cc -o assn3 assn3.c
% assn3
x = 5.000000, y = 10.000000, z = 10.000000
numprinted = 43
i = 12, j = 5, k = 2
numprinted = 21

4

Functions in C That Have No Arguments

In C, a function doesn’t have to have arguments. A function that has
no arguments works just like a function that has arguments — except
that it has no arguments.

For example, we’ve seen a functionmain in several programs that
takes no arguments:

#include <stdio.h>

main ()
{ /* main */

float w, x, y, z;
int i, j, k;

w = 0.5; x = 5.0; y = 10.0;
z = x + y * w;
i = j = k = 5;
printf("x = %f, y = %f, z = %f \n", x, y, z);
printf("i = %d, j = %d, k = %d \n", i, j, k);

} /* main */

Another standard I/O library function that has no arguments is
getchar , which inputs a single character from the standard input
(the keyboard), returning it as anint :

int c;

c = getchar();

Aside: Fortran 90 also supports functions that have no arguments.

5

Function With No Arguments Example:
getchar

% cat getchartest.c
#include <stdio.h>

main () { /* main */
char mystring[100];
int c, i = 0;

do {
c = getchar();
if (c != EOF) {

mystring[i] = (char)c;
i++;

} /* if c != EOF */
} while (c != EOF);
mystring[i] = ’ \0’;
printf("mystring = %s \n",

mystring);
} /* main */
% cc -o getchartest getchartest.c
% getchartest

abcde
^D

mystring = abcde

What doesEOFrefer to?

That’s a special code thatgetchar returns, which means that the
“end of file” has been reached. It corresponds to typingCtrl-D from
the keyboard.

6

User-Defined Functions in C

Just as in Fortran 90, in C we can define our own functions:

% cat cuberoottest.c
#include <stdio.h>
#include <math.h>

#define CUBE_ROOT_POWER 1.0 / 3.0

main () { /* main */
float cbrt;
float cube_root(float x);

printf("cube_root(%3.1f) = %f \n",
5.0, cube_root(5.0));

} /* main */

float cube_root (float x) {
return pow(x, CUBE_ROOT_POWER);

} /* cube_root */

% cc -o cuberoottest cuberoottest.c
ld:
Unresolved:
pow
% cc -o cuberoottest cuberoottest.c -lm
% cuberoottest
cube_root(5.0) = 1.709976

Notice that in C, unlike in Fortran 90, we don’t have a return vari-
able; rather, we return the appropriate value using areturn state-
ment.

7

User-Defined Functions in C (continued)

The general form for a user-defined function in C is:

returntype funcname(arg1type arg1, arg2type arg2, ...)
{

localtype1 localvar11, localvar1 2, ... ;
localtype2 localvar21, localvar2 2, ... ;
...
[function body]
return returnvalue;

}

So a function definition has:

1. A headerconsisting of:

(a) a return type;
(b) a function name;
(c) a list of arguments, enclosed in parentheses and separated

by commas, where each formal argument is preceded by its
type;

2. A function block, enclosed in curly braces, consisting of:

(a) declarations;
(b) executable statements.

Note: in C, you’re allowed to leave off the return type in the function
header, in which case the return type isint by default.

8

C Functions Prototypes

Here’s our cube root program:
% cat cuberoottest.c
#include <stdio.h>
#include <math.h>

#define CUBE_ROOT_POWER 1.0 / 3.0

main () { /* main */
float cbrt;
float cube_root(float x);

printf("cube_root(%3.1f) = %f \n",
5.0, cube_root(5.0));

} /* main */

float cube_root (float x) {
return pow(x, CUBE_ROOT_POWER);

} /* cube_root */

% cc -o cuberoottest cuberoottest.c -lm
% cuberoottest
cube_root(5.0) = 1.709976

Notice that, in the declaration section of the functionmain , we have
a declaration that looks like this:

float cube root(float x);

This is called afunction prototype. It’s basically the function header
followed by a semicolon.

What does it do?

In C, functions are largely independent of each other — just as in
Fortran 90, in which function, subroutine and program units are
largely independent of each other.

C function prototypes serve a similar purpose toEXTERNALdecla-
rations of functions in Fortran 90, but they don’t just tell the return
type; rather, they provide enough information about the function’s
arguments that it’s hard to become confused about what arguments
a function expects — and the compiler can alert you if you make a
mistake.

9

C Function With Side Effects
% cat userarray.c
#include <stdio.h>

#define MAXNUMELEMENTS 100

main () { /* main */
float element[MAXNUMELEMENTS];
int number_of_elements;
int input_number_of_elements(int maxnumelts);

number_of_elements =
input_number_of_elements(MAXNUMELEMENTS);

printf("The number of elements you want is %d. \n",
number_of_elements);

} /* main */

#include "inputnumeltsint.c"
% cat inputnumeltsint.c
int input_number_of_elements (int maxelts)
{ /* input_number_of_elements */

int numelts;

do {
printf("How many elements would you like \n");
printf(

" the array to have (between %d and %d)? ",
1, maxelts);

scanf("%d", &numelts);
if (numelts < 0)

printf("You can’t have negative elements! \n");
else if (numelts == 0)

printf("You can’t have no elements! \n");
else if (numelts > maxelts)

printf("You have too many elements! \n");
} while ((numelts < 1) || (numelts > maxelts));
return numelts;

} /* input_number_of_elements */
% cc -o userarray userarray.c
% userarray
How many elements would you like

the array to have (between 1 and 100)? -1
You can’t have negative elements!
How many elements would you like

the array to have (between 1 and 100)? 0
You can’t have no elements!
How many elements would you like

the array to have (between 1 and 100)? 101
You have too many elements!
How many elements would you like

the array to have (between 1 and 100)? 55
The number of elements you want is 55.

10

Changing Argument Values in C Functions

C doesn’t support anINTENT attribute for arguments, the way that
Fortran 90 does.

So, in C, we have complete freedom to change the values of our
arguments.

However, just because we change the value of an argument inside a
function, that doesn’t mean that we’ll also change the value of the
argument in the function that called it:

% cat mybadincrement.c
#include <stdio.h>

main () { /* main */
int x = 5;
void myincrement(int var);

printf("main: before call, x = %d \n", x);
myincrement(x);
printf("main: after call, x = %d \n", x);

} /* main */

void myincrement (int var)
{ /* myincrement */

printf("myincrement: before inc, var = %d \n", var);
var = var + 1;
printf("myincrement: after inc, var = %d \n", var);

} /* myincrement */
% cc -o mybadincrement mybadincrement.c
% mybadincrement
main: before call, x = 5
myincrement: before inc, var = 5
myincrement: after inc, var = 6
main: after call, x = 5

Why does this happen?

11

Pass By Value vs. Pass By Reference

In C, when an argument is passed to a function, the program grabs a
new location in memory andcopiesthe value of the actual argument
into this new location, which is then used as the formal argument.

This approach is namedpass by valueor call by value.

In Fortran 90, by contrast, arguments are used with an approach
namedpass by referenceor call by reference.

We can visualizepass by referenceby imagining Henry’s house,
which has the address

1802 23rd Ave SE

We canrefer to Henry’s house this way:

Henry’s house

But we can alsorefer to Henry’s house this way:

Dr. Neeman’s house

So, “Henry’s house” and “Dr. Neeman’s house” are two different
names for the same location; they arealiases.

In Fortran 90, when we call a procedure, each actual argument and
its corresponding formal argument are aliases of the same location
in memory.

12

Fortran 90 Pass By Reference Example
% cat henryshouse.f90
PROGRAM henryshouseprog

IMPLICIT NONE
INTEGER :: henryshouse
CALL who(henryshouse)
PRINT *, henryshouse, " people live in Henry’s house."

END PROGRAM henryshouseprog

SUBROUTINE who (drneemanshouse)
IMPLICIT NONE
INTEGER :: drneemanshouse
PRINT *, "How many people live in Dr. Neeman’s house?"
READ *, drneemanshouse

END SUBROUTINE who
% f90 -o henryshouse henryshouse.f90
% henryshouse

How many people live in Dr. Neeman’s house?
2

2 people live in Henry’s house.

C Pass By Value Example: BAD
% cat henryshousebad.c
#include <stdio.h>

main () { /* main */
int henryshouse;
void who(int house);

who(henryshouse);
printf("%d people live in Henry’s house. \n",

henryshouse);
} /* main */

void who (int drneemanshouse)
{ /* who */

printf("How many people live in Dr Neeman’s house? ");
scanf("%d", &drneemanshouse);

} /* who */
% cc -o henryshousebad henryshousebad.c
cc: Warning: henryshousebad.c, line 7:

The scalar variable "henryshouse" is fetched but not
initialized. (uninit1)

who(henryshouse);
------^

13

Corrected C Pass By Reference Example

% cat henryshouse.c
#include <stdio.h>

main () { /* main */
int henryshouse;
void who(int *house);

/* v */
/* v */

who(&henryshouse);
/* ^ */
/* ^ */

printf("%d people live in Henry’s house. \n",
henryshouse);

} /* main */

/* v */
/* v */

void who (int *drneemanshouse)
/* ^ */
/* ^ */

{ /* who */
printf("How many people live in Dr Neeman’s house? ");
scanf("%d", drneemanshouse);

} /* who */
% cc -o henryshouse henryshouse.c
% henryshouse
How many people live in Dr Neeman’s house? 2
2 people live in Henry’s house.

How Does This Work?

In C, the default passing strategy is pass by value.

To pass by reference, we have to piggyback on top of the pass by
value strategy.

So, thevalue that we have to pass is theaddressof the actual argu-
ment, which we achieve using theaddress operator, the ampersand.

14

Exercise: Rewriting Tax Input Function

Write a piece of the tax program from Mini Project #33
4 in C, creat-

ing a main function, as well as an input function to have the user
input the wages, taxable interest, unemployment compensation and
tax withheld. Themain function should call only the input function;
don’t worry about calculations or output.

The body of the program must not have any numeric or logical literal
constants; all constants must be defined as macros using appropriate
macro names.

15

