
The C Programming Language

Here’s a C program and the corresponding Fortran 90 program:

C

% cat helloworld.c
#include <stdio.h>
main () {

/* No IMPLICIT NONE */
printf("Hello world. \n");

}
% cc -o helloworldc \

helloworld.c
% helloworldc
Hello world.

Fortran 90

% cat helloworld.f90
! No #include <stdio.h>
PROGRAM helloworld

IMPLICIT NONE
PRINT *, "Hello world."

END PROGRAM helloworld
% f90 -o helloworldf \

helloworld.f90
% helloworldf

Hello world.

Here’s another corresponding pair of example programs:

C

% cat assn.c
#include <stdio.h>
main () { /* main */

/* No IMPLICIT NONE */
int x;

x = 5;
printf("x = %d \n", x);

} /* main */
% cc -o assnc assn.c
% assnc
x = 5

Fortran 90

% cat assn.f90
! No #include <stdio.h>
PROGRAM xvardec

IMPLICIT NONE
INTEGER :: x

x = 5
PRINT *, ’x = ’, x

END PROGRAM xvardec
% f90 -o assnf assn.f90
% assnf

x = 5

1

Some Elements of the C Language

The basic form of the C language is very much like the basic form
of Fortran 90.

For example, in C we have:

• reserved words(like keywords in Fortran 90):
C
int, float, char
for, while, do
extern

Fortran 90
INTEGER, REAL, CHARACTER
DO, WHILE
EXTERNAL

A complete list of reserved words can be found inProblem Solv-
ing & Program Design in C, Hanly & Koffman, Appendix E,
page AP29.

• user-defined identifiers(like symbolic names in Fortran 90):
kilometers per mile , chickens thought of ,
input1

• unitsof the program:

– In Fortran 90, we have a program unit, function units and
subroutine units (and other things as well).

– In C, all units are function units.

• Basic data types

Type C Fortran 90
Integer int INTEGER
Real float REAL
Complex Not implemented intrinsicallyCOMPLEX
Boolean Not implemented intrinsicallyLOGICAL
Character char CHARACTER

2

More Elements of the C Language

• Literal constants

Type C Fortran 90

Numeric
Integer -22 , 0, 1234567 -22 , 0, 1234567
Real -19.7 , 0.0 , -19.7 , 0.0 ,

12345.67890 12345.67890
Real Exponential 1.2345e5 , 1.2345e5 ,

-9.8765E-05 -9.8765E-05
Complex Not intrinsic (-7.23,0.91)

Boolean 0 for FALSE, .FALSE. , .TRUE.
any other integer for TRUE

Character
Single ’h’ , ’N’ ’h’ , "N"
String "hello" , ’hello’ ,

"Henry Neeman" "Henry Neeman"

• Variable Declarations

C

float x, y, z;
int i, j, k;
char is_prime;

Fortran 90

REAL :: x, y, z
INTEGER :: i, j, k
LOGICAL :: is_prime

• Variable Initializations

C

float q = 9.75;
int n = 13;
char n_is_odd = 1;

Fortran 90

REAL :: q = 9.75
INTEGER :: n = 13
LOGICAL :: n_is_odd = .TRUE.

3

Still More Elements of the C Language

• Assignment Statements

C

x = 0.15;
i = 122;
is_prime = 0;

Fortran 90

x = 0.15
i = 122
is_prime = .FALSE.

• Output Statements

C

printf("Hello world. \n");

Fortran 90

PRINT *, "Hello world."

• Input Statements

C

scanf("%f", &x);

Fortran 90

READ *, x

• Numeric Expressions

C

2 + 5 * 7 / (9.0 - 11)

Fortran 90

2 + 5 * 7 / (9.0 - 11)

• Boolean Expressions

C

!1 && 0 || 1

(x > a) && (x < b)
(q < 13) || (r < 12)

Fortran 90

.NOT. .FALSE. .AND. &
& (.FALSE. .OR. .TRUE.)
(x > a) .AND. (x < b)
(q < 13) .OR. (r < 12)

4

And Yet More Elements of the C Language

• IF blocks

C

if ((x < a) ||
(x > b)) {

printf(
"x outside [a,b] \n");

}

if (x < 0) {
printf("x is neg \n");

}
else if (x > 1000) {

printf("x is big \n");
}
else {

printf("x is small \n");
}

Fortran 90

IF ((x < a) .OR. &
& (x > b)) THEN

PRINT *, &
& "x outside [a,b]"
END IF

IF (x < 0) THEN
PRINT *, "x is neg"

ELSE IF (x > 1000) THEN
PRINT *, "x is big"

ELSE
PRINT *, "x is small"

ENDIF

• Loops

C

for (i = 1; i <= 5; i++) {
sum = sum + i;

}

inval = 0;
while (inval <= 0) {

printf(
"Positive #? \n");

scanf("%d", &inval);
}

Fortran 90

DO i = 1, 5
sum = sum + i

END DO

inval = 0
DO WHILE (inval <= 0)

PRINT *, &
& "Positive #?"

READ *, inval
END DO

5

Basic Structure of a C Program

% cat helloworld.c
#include <stdio.h>

main () {
/* No IMPLICIT NONE */
printf("Hello world. \n");

}
% cc -o helloworldc helloworld.c
% helloworldc
Hello world.

Notice that this example program has several different parts:

1. A #include statement (pronounced “pound include”).

2. A function calledmain that’s analogous to a Fortran 90 pro-
gram unit.

3. An output statement.

Notice also some differences between C and Fortran 90:

1. NoPROGRAMstatement and noEND PROGRAMstatement.

2. No IMPLICIT NONE statement.

3. Comments are between
/* and*/

4. Every statement either begins with a pound sign
#
or is followed by ablock(set of statements inside curly braces)
or ends with a semicolon.

5. The output statement looks weird compared to what we’ve seen
in Fortran 90.

6

User-defined Identifiers in C

User-defined identifiersin C are very much like symbolic names in
Fortran 90, and are subject to very similar rules:

1. They must consist of letters, digits and underscores only.

2. They must start with a letteror an underscore.

3. They cannot be the same word as areserved word.

4. They should not be the same asstandard identifiers(which
we’ll look at later).

However, there are some differences between user-defined identifiers
in C and symbolic names in Fortran 90:

1. They can start with an underscore:
x or even 9

2. They can be more than 31 characters long.

3. They arecase sensitive:
q is not the same identifier asQ

In fact, the entire C language is completelycase sensitive.

7

Variable Declarations

Like Fortran 90, C has several basic data types:

• Integers are denotedint .

• Reals are denotedfloat .

• There is no intrinsic complex type.

• There is no intrinsic Boolean type.

• Characters are denotedchar .

There are other basic data types, but we won’t be getting into them
now.

The general form of a C variable declaration is:

datatype varname1, varname2, ... varnamen;

For example:

float x, y, z;
int i, j, k;
char middle_initial;

C also supports variable initializations:

datatype varname1 = value1, ... varnamen = valuen;

For example:

float x = 1.2, y = 7.0, z = 1.234e-5;
int i = 6, j = 9, k = 7;
char middle_initial = ’J’;

8

Assignments
Assignments in C look very much like assignments in Fortran 90,
except that an assignment statement in C is followed by a semicolon:

destinationvariable= expression;
For example:
% cat assn2.c
#include <stdio.h>

main ()
{ /* main */

float w, x, y, z;
int i, j, k;

w = 0.5; x = 5.0; y = 10.0;
z =

x + y * w;
i = 12; j = 5; k = i / j;
printf("x = %f, y = %f, z = %f \n",

x, y, z);
printf("i = %d, j = %d, k = %d \n",

i, j, k);
} /* main */
% cc -o assn2 assn2.c
% assn2
x = 5.000000, y = 10.000000, z = 10.000000
i = 12, j = 5, k = 2

Notice that this program has multiple assignment statements on the
same line:

w = 0.5; x = 5.0; y = 10.0;

It also has a statement that’s spread out over multiple lines, with no
continuation character:

z =
x + y * w;

In C, multiple statements (of any kind, not just assignments) can
appear on a single line, and a single statement can be split into mul-
tiple lines, because allwhite space(spaces, tabs, carriage returns) is
equivalent, and because statements are separated by semicolons.

9

Outputting via printf

C doesn’t have aPRINT statement like Fortran 90; instead, C has a
function namedprintf that serves the same purpose:

printf("Hello world. \n");

Theprintf function can also be used to output the values of vari-
ables:
printf("x = %d \n", x);
printf("i = %d, 7.0 = %f, 1 + 2 / 3 = %d \n",

i, 7.0, 1 + 2 / 3);

Notice the%dand%f between the quotation marks. What does that
mean?

A call to theprintf function consists of two parts:

1. aformat string

2. aprint list (which might be empty)

The format string is a collection of text andplaceholders, which
are the little%dand%f things you’ve seen in calls to theprintf
function. So, in the above examples, the format strings are:

"Hello world. \n"
"x = %d\n"

"i = %d, 7.0 = %f, 1 + 2 / 3 = %d \n"

What does the\n mean? It’s referred to as anewline, and it causes
a carriage return to be printed. In C, theprintf function does not
print a carriage return at the end of a line unless specifically told to,
via the newline character.

The optionalprint list, which can have arbitrarily many elements, is
a list of variables, literal constants and/or expressions whose types
corresponds to the types of theplaceholdersin the format string. At
runtime, the placeholders are replaced by the values of the elements
of the print list, in the same order as the print list.

10

Inputting via scanf

Just as C doesn’t have aPRINT statement, C also doesn’t have a
READstatement; instead, C has a function namedscanf that serves
the same purpose:

scanf("%f %d", &thisfloat, &thatint);

The scanf function is used to input the values of variables, so in
the above example, it’s used to input the value of afloat variable
namedthisfloat and anint variable namedthatint .

Notice that the arguments passed toscanf are very similar to the
arguments passed toprintf , but that the format string in the call
to scanf contains just the placeholders.

What does the& in front of thisfloat mean?

It’s called theaddress operator, and it’s very complicated, so we’re
not going to get into it right now.

For now, accept on faith that youMUST MUST MUST use an ad-
dress operator in front of every variable that you input via a call to
scanf .

11

scanf Example

% cat scanftest.c
#include <stdio.h>

main () {
float this;
int that, theother;

printf("Enter a float: \n");
scanf("%f", &this);
printf("You entered %f. \n", this);
printf("Enter two ints: \n");
scanf("%d %d", &that, &theother);
printf("You entered %d and %d. \n",

that, theother);
}
% cc -o scanftest scanftest.c
% scanftest
Enter a float:

5.7
You entered 5.700000.
Enter two ints:

2 3
You entered 2 and 3.
% scanftest
Enter a float:

5.7
You entered 5.700000.
Enter two ints:

2
3

You entered 2 and 3.
% scanftest
Enter a float:

5.7
You entered 5.700000.
Enter two ints:

2,3
You entered 2 and 1073840608.

Notice: if you have multiple inputs on a line, separating them with a
commadoesn’t work.

12

Arithmetic Expressions in C

Just as in Fortran 90 (and most programming language), C supports
arithmetic expressions, and these arevery similar to arithmetic ex-
pressions in Fortran 90. For example, the operations supported in C
are:

Operation Name Kind Operator Usage Effect

Identity Unary + +x None
None x None

Negation Unary - -x Changes sign ofx

Addition Binary + x + y Addsx andy
Subtraction Binary - x - y Subtractsy from x
Multiplication Binary * x * y Multiplies x by y (x× y)
Division Binary / x / y Dividesx by y (x÷ y)
Remainder Binary % x % y Remainder ofx÷ y

(int only)

Notice that C doesn’t have the exponentiation operator** like in
Fortran 90, but it does have a remainder operator%, which works
only for integer division.

The priority order of evaluations in C is similar to Fortran 90, but not
identical:

1. parentheses

2. unary identity and negation,right to left

3. multiplication, division and remainder, left to right

4. addition and subtraction, left to right

What are the differences between C and Fortran 90?
1. Unary identity and negation have higher priority than multipli-

cation and division, and are performedright to left rather than
left to right.

2. The remainder operator has the same priority as multiplication
and division.

13

Arithmetic Expressions Example
C
% cat exprsc.c
#include <stdio.h>

main () {

printf(
"1 - 2 - 3 = %d \n",

1 - 2 - 3);
printf(

"1 - (2 - 3) = %d \n",
1 - (2 - 3));

printf(
"24 / 2 * 4 = %d \n",

24 / 2 * 4);
printf(

"24 / (2 * 4) = %d \n",
24 / (2 * 4));

printf(
"27.0 / 5.0 = %f \n",

27.0 / 5.0);
printf(

"27 / 5 = %d \n",
27 / 5);

printf(
"27 %% 5 = %d\n",

27 % 5);
}
% cc -o exprsc exprsc.c
% exprsc
1 - 2 - 3 = -4
1 - (2 - 3) = 2
24 / 2 * 4 = 48
24 / (2 * 4) = 3
27.0 / 5.0 = 5.400000
27 / 5 = 5
27 % 5 = 2

Fortran 90
% cat exprsf.f90

PROGRAM exprs
IMPLICIT NONE
PRINT *, &

& "1 - 2 - 3 = ", &
& 1 - 2 - 3

PRINT *, &
& "1 - (2 - 3) = ", &
& 1 - (2 - 3)

PRINT *, &
& "24 / 2 * 4 = ", &
& 24 / 2 * 4

PRINT *, &
& "24 / (2 * 4) = ", &
& 24 / (2 * 4)

PRINT *, &
& "27.0 / 5.0 = ", &
& 27.0 / 5.0

PRINT *, &
& "27 / 5 = ", &
& 27 / 5

PRINT *, &
& "MOD(27,5) = ", &
& MOD(27,5)
END PROGRAM exprs
% f90 -o exprsf exprsf.f90
% exprsf

1 - 2 - 3 = -4
1 - (2 - 3) = 2
24 / 2 * 4 = 48
24 / (2 * 4) = 3
27.0 / 5.0 = 5.400
27 / 5 = 5
MOD(27,5) = 2

Notice, in the C program, the double percent sign in the call to the
printf function for the remainder of 27 divided 5:

"27 %% 5 = %d\n"
Because the%in a format string indicates the start of a placeholder
(e.g.,%d, %f), we use%%to indicate the literal%character.

14

Other Properties of Arithmetic Expressions

In C as in Fortran 90, arithmetic expressions can be insingle mode
(all integer operands or all floating point operands) or inmixed mode
(combined integer and floating point). The rules for C are the same
as the rules for Fortran 90 (and many other programming languages).

Likewise, the rule about division by zero – it causes the program to
crash – is the same for C as for Fortran 90 (and many other program-
ming languages).

15

Assignments with Arithmetic Expressions

Just as in Fortran 90, in C we can assign the result of an arithmetic
expression to a variable:

x = a * b + c / 12;

Syntactic Sugar: Assignment Operators
C has special operators calledassignment operatorsthat allow si-
multaneous arithmetic and assignment, because these kinds of as-
signments are extremely common, and C programmers like to type
as few keystrokes as possible:

a += 2.0; /* same as a = a + 2.0; */
b -= 7.5; /* same as b = b - 7.5; */
c *= 1E+5; /* same as c = c * 1E+5; */
d /= 12; /* same as d = d / 12; */
e %= 3; /* same as e = e % 3; */

C also provides special operators called theincrementanddecrement
operators:

j++; /* same as j = j + 1; */
k--; /* same as k = k - 1; */

The incrementand decrementoperators are strange, because they
can appear on either the left side or the right side of a variable:

++j; /* same as j = j + 1; */
--k; /* same as k = k - 1; */

16

Assignment Operator Example
% cat assnop.c
#include <stdio.h>

main () {
float a, b, c;
int d, e, j, k;

a = 5.0; b = 2.5; c = 999.0; d = 132; e = 8;
j = 5; k = 8;
printf("Before calculating: \n");
printf(" a=%f, b=%f, c=%f, \n", a, b, c);
printf(" d=%d, e=%d, \n", d, e);
printf(" j=%d, k=%d \n", j, k);
a += 2.0; /* same as a = a + 2.0; */
b -= 7.5; /* same as b = b - 7.5; */
c *= 1E+5; /* same as c = c * 1E+5; */
d /= 12; /* same as d = d / 12; */
e %= 3; /* same as e = e % 3; */
j++; /* same as j = j + 1; */
k--; /* same as k = k - 1; */
printf("After calculating: \n");
printf(" a=%f, b=%f, c=%f, \n", a, b, c);
printf(" d=%d, e=%d, \n", d, e);
printf(" j=%d, k=%d \n", j, k);
++j; /* same as j = j + 1; */
--k; /* same as k = k - 1; */
printf("After calculating again: \n");
printf(" j=%d, k=%d \n", j, k);

}
% cc -o assnop assnop.c
% assnop
Before calculating:

a=5.000000, b=2.500000, c=999.000000,
d=132, e=8,
j=5, k=8

After calculating:
a=7.000000, b=-5.000000, c=99900000.000000,
d=11, e=2,
j=6, k=7

After calculating again:
j=7, k=6

17

Increment & Decrement Strangeness
The increment and decrement operators have a curious property:
they can be embedded in expressions, in which case order matters:
% cat incdec.c
#include <stdio.h>
main () {

int a = 5, b = 7;
int resultib, resultia, resultdb, resultda;
int inc_before = 2, inc_after = 2;
int dec_before = 5, dec_after = 5;

printf("Before calculating: \n");
printf(" a=%d, b=%d \n", a, b);
printf(" inc_before=%d, inc_after=%d \n",

inc_before, inc_after);
printf(" dec_before=%d, dec_after=%d \n",

dec_before, dec_after);
resultib = a + b * ++inc_before;
resultia = a + b * inc_after++;
resultdb = a + b * --dec_before;
resultda = a + b * dec_after--;
printf("resultib = %d, inc_before = %d \n",

resultib, inc_before);
printf("resultia = %d, inc_after = %d \n",

resultia, inc_after);
printf("resultdb = %d, dec_before = %d \n",

resultdb, dec_before);
printf("resultda = %d, dec_after = %d \n",

resultda, dec_after);
}
% cc -o incdec incdec.c
% incdec
Before calculating:

a=5, b=7
inc_before=2, inc_after=2
dec_before=5, dec_after=5

resultib = 26, inc_before = 3
resultia = 19, inc_after = 3
resultdb = 33, dec_before = 4
resultda = 40, dec_after = 4

If the operator appears before the variable name, then the variable
is updatedbefore its value is used in the expression, otherwise it’s
updatedafter it’s used.

18

Converting Fortran 90 to C

Let’s convert this Fortran 90 program to C.

PROGRAM stats
IMPLICIT NONE
REAL,PARAMETER :: stddev_term_power = 2.0
REAL,PARAMETER :: stddev_power = 0.5
INTEGER,PARAMETER :: number_of_elements = 4
INTEGER,PARAMETER :: decrement = 1
REAL :: x1, x2, x3, x4
REAL :: mean, stddevsum, stddev
PRINT *, "Enter the ", number_of_elements, &

& " elements."
READ *, x1, x2, x3, x4
mean = (x1 + x2 + x3 + x4) / number_of_elements
PRINT *, "The mean of the ", number_of_elements, &

& " elements is ", mean, "."
stddevsum = (x1 - mean) ** stddev_term_power + &

& (x2 - mean) ** stddev_term_power + &
& (x3 - mean) ** stddev_term_power + &
& (x4 - mean) ** stddev_term_power

stddev = &
& (stddevsum / &
& (number_of_elements - decrement)) ** stddev_power

PRINT *, "The standard deviation of the ", &
& number_of_elements, &
& " elements is ", stddev, "."
END PROGRAM stats

19

Converting Fortran 90 to C (continued)

Let’s convert this Fortran 90 program to C.

PROGRAM eng2metric
IMPLICIT NONE
REAL,PARAMETER :: kilometers_per_mile = 1.61
REAL,PARAMETER :: meters_per_kilometer = 1000.0
REAL,PARAMETER :: minutes_per_hour = 60.0
REAL,PARAMETER :: seconds_per_minute = 60.0
REAL :: distance_in_miles, distance_in_kilometers
REAL :: speed_in_miles_per_hour, &

& speed_in_meters_per_second
PRINT *, "What’s the distance in miles?"
READ *, distance_in_miles
distance_in_kilometers = &

& distance_in_miles * kilometers_per_mile
PRINT *, "The distance in kilometers is ", &

& distance_in_kilometers, "."
PRINT *, "What’s the speed in miles per hour?"
READ *, speed_in_miles_per_hour
speed_in_meters_per_second = &

& (speed_in_miles_per_hour * &
& kilometers_per_mile * &
& meters_per_kilometer) / &
& (minutes_per_hour * seconds_per_minute)

PRINT *, "The speed in meters per second is ", &
& speed_in_meters_per_second, "."
END PROGRAM eng2metric

20

